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Abstract 
A new kind of widget has begun appearing in the data sci-
ence notebook programming community that can fluidly 
switch its own appearance between two representations: a 
graphical user interface (GUI) tool and plain textual code. 
Data scientists of all expertise levels routinely work in both 
visual GUIs (data visualizations or spreadsheets) and plain-
text code (numerical, data manipulation, or machine learn-
ing libraries). These work tools have typically been sep-
arate. Here, we argue for the unique role and potential of 
fluid GUI/text programming to serve data work practices. 
We contribute a generalized method and API for robust 
fluid GUI/text coding in notebooks that addresses key ques-
tions in code generation and user interactions. Finally, we 
demonstrate the potential of our method in two notebook 
tool examples and a usability study with professional data 
science and machine learning practitioners. 
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Figure 1: The output of the code 
df.head() is the first few rows of 
the datable df. In a standard 
notebook (A), this table is a 
view-only rendering. In (B), the 
table is a live representation of df 
that the user can manipulate like a 
normal spreadsheet. In (B), a user 
drags a column to move it to the 
front of the datatable. 

Introduction & Background 
Data scientists coordinate between different tools and tasks 
in an rapid iterative fashion to experiment with data [5, 
1]. Common tasks include data cleaning, visualization, 
transformation, and modeling [5, 1]. Common tools include 
spreadsheets, chart authoring tools, terminals, metric dash-
boards, code editors, and many code libraries [6, 8, 9]. 

To create a workflow that another person can sensibly repli-
cate, notebook programming has quickly become a popular 
choice for anyone from students to professionals experi-
menting with data [13]. A notebook combines cells of for-
matted text/image notes, executable code, and rendered 
results in a single interactive document [15]. In this way, a 
notebook operates at a higher meta-level than any single 
form of work or programming language. It pulls together 
into a single page what data scientists otherwise commonly 
work with across separate tools: terminal shells, scripts, 
temporary output windows, output files, etc. [10]. Notebook 
programming has been highly lauded by the scientific com-
puting community, who say that the format makes data work 
much easier to share and replicate [11, 17, 13, 12]. 

We observe that notebook programming, with its relatively 
recent rise to popularity, is still actively developing as a 
paradigm. This can be seen within the large active online 
ecosystem of communities focused on data topics, where 
publicly shared notebooks are common [15]. Here, we fo-
cus specifically on how the humble output cell faces an 
expanding role. As shown in Figure 1A, an output cell dis-
plays the result of executing the code cell directly above it. 
In the traditional sense of interactive programming with a 
read-evaluate-print-loop (REPL), output is a view-only final 
result. Finality is important here in the notebook’s design. 
Consider a notebook’s state holds the current value of each 
variable accross the entire notebook. State is only changed 

by running the users’ code cells (likely for good security 
reasons). An output, on the other hand, is a final endpoint. 
It cannot go back and update state. It doesn’t have access. 

Newer widgets built by the community for notebooks tend 
to clash against this constraint. They imagine a much more 
expansive role for output than a REPL definition provides. It 
is common to see output cells, augmented with community-
created tools, contain sophisticated interactive visualiza-
tions2, elaborate ipyWidgets for interactive input, or even 
spreadsheets editors3. “Output” is reappropriated as a 
space for fully functional graphical user interface (GUI) tools 
where data scientists can continue performing useful work. 
To illustrate, consider two aligned scenarios: 

(A) A data scientist Rey is working in a notebook to ana-
lyze census data [4]. Rey starts by previewing the datatable 
(Figure 1A), which shows a standard view-only table. Rey 
now writes code to start cleaning the datatable. 

(B) Rey sees the same table, but as a fully functional spread
sheet editor (Figure 1B). Rey quickly begins directly manip-
ulating the table to re-arrange and rename columns so that 
the census data is easier to read (Figure 1B). 

Both (A) and (B) are completely valid forms of the same 
data work. However (B) gives Rey the option to pick or 
combine between code or spreadsheet, whichever mode 
is easiest to them to achieve their task. We strongly believe 
that repurposing output for GUI tool work is fully within the 
spirit and ethos of notebooks to combine different forms of 

1An exception is ipyWidgets, an influencial widget library that breaks 
some of these rules in a carefully controlled way: It allows output widgets 
to change the value of specific variables pre-chosen by the user. 

2Good examples are visualization platforms plot.ly or bokeh, which 
both have interactive notebook widgets. 

3See qgrid for an example of widget that approximates a spreadsheet. 

-
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# -- generated code —
column_names = list(df)
column_names.pop(6)
column_names.insert(1, "occupation")
df = df.reindex(columns=column_names)
%summon table df
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Figure 2: In (1) the table becomes 
a fully interactive spreadsheet. The 
user drags and drops a column to 
reposition it. In (2) the user’s action 
is reflected both in an updated 
table rendering and in code. 

data work. GUI tools, like the spreadsheet, are essential 
parts of the data scientist’s toolbox. However to actually 
achieve a notebook that fluidly combines code with GUI 
work requires dealing with some fundamental challenges 
around notebook state and user experience. 

When Rey rearranges columns of df in the spreadsheet 
GUI (Figure 1B), how did this affect the value of df for 
the rest of the notebook? Since state is protected from 
output, Rey could work all day in the spreadsheet with-
out ever effecting the value of df at all. Although multiple 
community-created spreadsheet widgets exist, this state 
barrier plagues all of them to various degrees. As long as 
GUI tools operate apart from the rest of the notebook state, 
all GUI work Rey does is easily lost between sessions. 
Rey’s GUI work also loses replicability. It cannot simply be 
re-run alongside the rest of the notebook. Some implemen-
tations circumvent these issues by also writing code along-
side spreadsheet actions4. Our goal is to build off of these 
early examples towards a generalized method. By carefully 
investigating the interaction needs for generalization, we 
hope to enable a future where all forms of GUIs, from inter-
active ML tools [3] to complex visualization tools [14], can 
provide data scientists with useful work in the notebook. 

To inform our goal, dual code and GUI representations of 
work has extensive legacy in other domains. The ability 
to edit content in either GUI or code form is pervasive in 
editors for graphics5 and web design6. This idea has also 
appeared in HCI research tools like Juxtapose [7]. 

Drawn from lessons-learned in prior work, the key of our 

4See bamboolib bamboolib.8080labs.com or qgrid github.com/ 
quantopian/qgrid which both generate some form of code. 

5See graphics environement Blender www.blender.org/ 
6See web design tool Adobe Dreamweaver www.adobe.com/ 

products/dreamweaver.html 

approach is for each GUI action that should affect state, it 
is paired with an equivalent code action. Shown in Figure 2, 
when Rey moves the “occupation” column in (1), the equiv-
alent move in pandas Python code is auto-generated and 
run in (2). The paired code run ensures notebook state is 
fully updated and Rey’s actions are recorded. Rey can go 
ahead and edit in the GUI or the code however they wish. 

Code generation can be highly complex in theory, but here 
we rely on a simple code templating trick, discussed below. 
We built a small extension for Jupyter notebooks %mage, 
which acts as an application programming interface (API) 
to allow any GUI tool like table (Figure 2) to seamlessly 
generate code and share state with the notebook in a scaf-
folded way. %mage takes care of program analysis and note-
book state concerns, while a GUI tool provides its own user 
interactions and code templates for any state-effecting ac-
tions. We discuss the design and tradeoffs of this approach 
in detail. Our contributions in this paper are: 

1. Discussion of %mage API and design considerations 
to make this approach practical to tool builders of any 
GUI widget for doing active work in the notebook 

2. An implementation of two example GUI tools that use 
%mage API: table and plot 

3. New kinds of selection and drag-drop interactions 
between GUI and code in the notebook. 

4. An initial study of our approach, testing the usability 
of plot and table with professional data scientists. 

%mage API 
The %mage API works as an extension to an unmodified 
Jupyter Notebook [11]. That said, %mage has more per-
missions than the average extension. %mage accesses the 
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table has a code template 
for filtering a column:  

$DF=$DF[$DF["$COL"]$EXPR]

table sends the template to
mage API, which resolves it as: 
df = df[df["age"] < 65]

mage API inserts this code into the 
user’s notebook cell and runs it:

df = df[df["age"] < 65]
%summon table df

mage API returns a table 
widget with the value of df

table now shows a filtered df

%summon table df

user clicks to  filter by age < 65 
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Figure 3: The update cycle for how 
a user’s action impacts both GUI 
and code. Note the user’s variable 
df updates in the normal notebook 
way: by running a cell of code. 

Jupyter Notebook base application object directly to ana-
lyze, write, and run code. To invoke a GUI tool, as shown 
in Figure 2, the user writes a magics syntax %summon, then 
the name of the GUI tool, then any parameters for that tool. 
In the case of the spreadsheet, this is %summon table df. 
Magics syntax is a special kind of meta-command in note-
books that starts with %7. We chose to create a magics 
syntax so that it would more clearly stand-out to the user 
that the output produced will behave differently than normal 
notebook output. Any tool that uses %mage can be “sum-
moned” into the notebook environement, much like a library 
import statement. However, anyone replicating %mage’s ap-
proach could choose to use an alternative syntax. 

Figure 3 shows the general workflow of %mage. Upon in-
vocation, %mage finds the correct tool based on its name 
(table for the spreadsheet), and calculates the value of 
each parameter by consulting notebook state. Required 
parameters are set by the individual tool’s creator. For in-
stance, table requires a variable that has the appropriate 
type such that it can be displayed in a spreadsheet. Next, 
%mage instantiates the GUI widget with its parameter val-
ues, and renders the GUI in an HTML box in the output. 

When the user makes an action, such as adding a filter on 
table in Figure 3, there’s a question of whether this action 
should affect notebook state. If the designers of the table 
decide that the action should only affect the tool display, 
no API call to %mage is needed. Here for a filter, however, 
an updated value of the variable df is needed to show a 
filtered table. So, table makes a call to the %mage API to 
figure out what that new value df is. 

If we zoom out from table, to any GUI tool that might use 

7magics start with a token unused by the source language. So this is 
% in Python, which we use here, but may be different in other languages. 

the %mage API, we run into a techical challenge. How does 
%mage know what a filter is and how to compute it? We ini-
tially considered hard-coding tabular data operations into 
%mage, but then, what if the GUI is a color picker? Or an im-
age editor? If %mage needs update notebook state based 
on a GUI action, and a GUI could do just about anything, 
we ultimately decided that a GUI author will need to pre-
cisely define what their actions mean. To fill this need, we 
next discuss our adoption of code templates. 

Templating Actions from GUI to Code 
To translate actions from GUI into some kind of computation 
that can affect state, we start from the intuition that pro-
grammers today routinely grab prefabricated code snippets 
from various resources online, and adjust those snippets 
to fit their scenario [2]. Thus it may not be too burdensome 
for a GUI tool creator to author a code snippet that should 
accompany a specific GUI action. For instance, say a user 
drops a column from their data in the table tool. In Python 
with the pandas library8, this is written as: 

myData = myData.drop(columns=["dogs"]) 

Of course, in an interactive tool, we won’t know which col-
umn the user is dropping until the action occurs. Their 
datatable may also not be named myData. Re-writing this 
code to turn unknown values into a template it becomes: 

$DF = $DF.drop(columns=[$COL]) 

Though we use Python examples, note that templates are 
not limited to Python. By writing templates with different 
language or library bindings for the same action, a GUI tool 
creator can support multiple languages and libraries. %mage 
uses type-matching to ensure the correct template is used. 

8pandas data manipulation library https://pandas.pydata.org/ 

https://pandas.pydata.org/
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# -- generated code —
cols = list(df)
cols.pop(6)
cols.insert(2, "occupation")
df = df.reindex(columns=cols)
%summon table df

# -- generated code —
df["elder"] = df[df["age"] > 65]
cols = list(df)
cols.pop(6)
cols.insert(1, "occupation")
cols.pop(1)
cols.insert(2, "occupation")
df = df.reindex(columns=cols)
df.drop(columns=["elder"]
%summon table df
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Figure 4: Two code listings for the 
same events. In (A), lines 1 and 8 
undo each other, since the user 
adds and then deletes the same 
column. In (A), lines 3-6 a the 
column “occupation” is moved 
twice, first to position 1, then to 
position 2. In (B), these same 
events are reduced to reflect the 
current state only. There is no 
mention of “elder”, since the user 
undid that column creation, and 
“occupation” moves only once, to 
its final destination. 

The Full Update Cycle 
To pull together the entire update cycle, we return to the 
point in Figure 3 where the user filters their data in table. 
As soon as this action occurs, table makes an API call to 
%mage with its code template for filtering. Additionally, since 
the user selected “age” and “< 65”, table can send this 
known information to %mage as well. Thus %mage receives: 

template $DF = $DF[$DF["$COL"]$EXPR] 
where $COL = "age" and $EXPR = "< 65" 

By consulting the notebook state, %mage identifies the name 
of $DF as df and thus resolves the template as: 

df = df[df["age"] < 65] 

Now this code is ready to run, %mage inserts the new code 
just above the invocation %summon line and requests the 
notebook to run the code cell again. When the %summon 
code line is re-run this time, %mage does not create a new 
table widget. Instead it shows the existing table and 
passes table the updated value of df. By displaying the 
updated df, the table is now showing a properly filtered 
datatable for the user, and the update cycle is complete. 

User Experience Design Challenges 
Having walked through a simple use case, there are many 
more details that come into play when we consider serious 
usage between code/GUI work over time. Here we highlight 
some of the most challenging design considerations: 

Challenge: Interrupted GUI Tool Session 
Imagine our user Rey is working on the variable df in the 
table tool. Now Rey goes to a different cell in their note-
book, and writes and runs code that changes df. The df 
that table displays is now out-of date and incorrect. What 

should it do? For this scenario, %mage watches the note-
book state for updates to any variable like df that is actively 
being used in a GUI. However, there is no clear answer to 
how %mage should react. Either (A) %mage could update 
table as soon as it notices this discrepancy, or (B) %mage 
could “freeze” table so that the user must re-run table’s 
code cell (effectively updating it) before they can interact 
with table again. We tentatively chose (B) because today’s 
notebooks leave outdated output as-is for the user to view. 

Challenge: Multiple Sessions Over Time 
Earlier (Figure 3) the user Rey filtered df by “age < 65” in 
table. This action auto-generated the matching filter code, 
and imagine that table also showed an indicator (as most 
spreadsheets do) that the “age’ column is filtered. Now, Rey 
goes and manually deletes all previously auto-generated 
code from the cell, leaving just the filter code. When Rey 
now runs the cell, the question is: Does table still know 
that df is filtered (i.e. show a filter indicator on “age”)? 

This scenario is the classic the round trip problem. Al-
though table and code were perfectly aligned in the ini-
tial session, as soon as Rey edited the code, table no 
longer has a reliable list of what actions occurred —since 
some of them may have been deleted and effectively un-
done. Naively, table will display df as if it had never seen 
this data before, with no filter indicator. To make an effec-
tive “round trip” would require %mage to be able to read the 
user’s code and translate back code into GUI action. To a 
limited extent, %mage can do this, by turning table’s code 
templates into regular expressions to locate and pass pos-
sible table actions. However, given this approach is lim-
ited, it is unclear how to ensure a smooth user experience. 

Challenge: Code Clutter 
In early feedback on %mage, practitioners expressed con-
cern that GUI spitting out a line of code for each action 
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get selection show in table

%summon vegalite car_data

Figure 5: Here we show a simple 
interactive plot tool created with 
Vega-Lite [16]. The user selects 
data points in the plot. As soon as 
the user begins to drag their 
selection out of the plot, they are 
given the option by %mage to see 
the same selection in a new 
representation: either in a code 
selection or in a spreadsheet. 

would quickly pile up a mess of code. This is illustrated in 
Figure 4. To combat this issue, we take the approach (Fig-
ure 4B) to compose operations into a smaller set. This is 
most easily achieved if it is possible to compare the start 
state of the GUI tool with the current state. For instance, a 
spreadsheet only has a finite set of columns. By compar-
ing which columns were present at the start of the session 
versus now, we can combine column-related actions. If a 
user dropped four columns, all at different points in time, 
that might be compactly written in a single line of code. 

A key limitation of this current approach is that it places 
the burden on GUI tool authors to create a composed ac-
tion list, which becomes complicated when actions have 
order dependencies. Once the GUI tool has composed a 
list of templates, %mage fully replaces all previously auto-
generated code from this session with these new templates. 
Finally, %mage takes a clean initial copy of state (df be-
fore any GUI work was done on it), and runs the notebook 
code with that to ensure table receives the correct value of 
df. While the result looks much more like human-authored 
code (Figure 4B), composition remains a open issue. 

Drag-Drop Between Multiple Cells 
Although creating a fluid environment between code and 
GUI certainly holds challenges, it also holds interesting op-
portunities. One of these is these is ability for data scien-
tists to select data in a visual form, like a table or plot, and 
seamlessly retrieve that selection in code. An example of 
this is shown in Figure 5. A user selects a region of data 
point from a plot, and then can drag and drop their selection 
into code, to perform further analysis, or into a table, to view 
in the data points in detail. This drag and drop interaction 
we included in our implementation for both table and plot 
and is included as part of the %mage API since it concerns 
transferring state between one or more tools. 

Usability Study 
To test the usability of these ideas, we asked data science 
and machine learning practitioners from within Apple Inc. 
to try out table and plot in a series of predefined data 
analysis tasks on a simple census dataset [4]. Nine data 
workers participated in the study, with an average age of 
30 and gender split 3 female and 6 male. Prior experience 
working with data ranged from a few months to 24 years. 

All participants were able to complete all analysis tasks 
using table and plot. However, participants reacted 
differently to code being live generated as they worked. 
Some participants were very enthusiastic: “[pandas] is a 
very dense language, even for filters, if you don’t remember 
how to write it . . . with this simple thing you’ve got the whole 
power of pandas.” Another participant wanted a way to hide 
the code altogether unless they needed it. In a post-task 
survey all participants “Agreed” or “Strongly Agreed” on a 5-
point Likert scale to the statements “These new interactions 
made me more efficient on the tasks I just did” and “It is 
pleasant to use”. While eight participants also agreed with 
the question “I learned to use it quickly”, one participant 
who had difficulty with plot felt just “Neutral”. 

Conclusions 
In this work we have illustrated both an opportunity space 
and the interaction challenges that come with involving GUI 
work in notebooks. We believe that a future notebook that 
fluidly incorporates diverse forms of data work is well worth 
the continued research, both from the research and practi-
tioner communities, to achieve this dream. 
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