
Model Compression in Practice: Lessons Learned from 
Practitioners Creating On-device Machine Learning Experiences 

Fred Hohman Mary Beth Kery Donghao Ren Dominik Moritz 
Apple Apple Apple Apple 

Seattle, WA, USA Pittsburgh, PA, USA Seattle, WA, USA Pittsburgh, PA, USA 
fredhohman@apple.com mkery@apple.com donghao@apple.com domoritz@apple.com 

ABSTRACT 
On-device machine learning (ML) promises to improve the privacy, 
responsiveness, and proliferation of new, intelligent user experi-
ences by moving ML computation onto everyday personal devices. 
However, today’s large ML models must be drastically compressed 
to run efciently on-device, a hurtle that requires deep, yet cur-
rently niche expertise. To engage the broader human-centered ML 
community in on-device ML experiences, we present the results 
from an interview study with 30 experts at Apple that specialize 
in producing efcient models. We compile tacit knowledge that 
experts have developed through practical experience with model 
compression across diferent hardware platforms. Our fndings of-
fer pragmatic considerations missing from prior work, covering 
the design process, trade-ofs, and technical strategies that go into 
creating efcient models. Finally, we distill design recommenda-
tions for tooling to help ease the difculty of this work and bring 
on-device ML into to more widespread practice. 

CCS CONCEPTS 
• Human-centered computing → Interactive systems and 
tools; • Computing methodologies → Machine learning; Artif-
cial intelligence. 

KEYWORDS 
Efcient machine learning, model compression, on-device machine 
learning, interview study, interactive systems, design directions 

ACM Reference Format: 
Fred Hohman, Mary Beth Kery, Donghao Ren, and Dominik Moritz. 2024. 
Model Compression in Practice: Lessons Learned from Practitioners Cre-
ating On-device Machine Learning Experiences. In Proceedings of the CHI 
Conference on Human Factors in Computing Systems (CHI ’24), May 11– 
16, 2024, Honolulu, HI, USA. ACM, New York, NY, USA, 18 pages. https: 
//doi.org/10.1145/3613904.3642109 

1 INTRODUCTION 
Most modern machine learning (ML) models in production today 
occupy cloud servers of exceedingly more computational capacity 

This work is licensed under a Creative Commons Attribution International 
4.0 License. 

CHI ’24, May 11–16, 2024, Honolulu, HI, USA 
© 2024 Copyright held by the owner/author(s). 
ACM ISBN 979-8-4007-0330-0/24/05 
https://doi.org/10.1145/3613904.3642109 

and power than the device in your pocket. Yet for delivering intel-
ligent user experiences, there is good reason to move ML models 
onto personal computing devices people use every day. 

On-device ML is the practice of storing, training, and running ML 
models on an individual’s device, such as a smartphone, tablet, or 
wearable. However, as today’s state-of-the-art models grow larger 
and larger in size (e.g., into the billions of parameters [33, 94, 104, 
127]), efciency remains the biggest barrier to on-device ML [9, 23]. 
An arbitrary ML model placed on a mobile device can easily con-
sume every available resource of the device, whether it be compute, 
memory, or battery. Creating efcient, on-device models brings 
new challenges to the ML development process. 

In this paper, we argue that research in efcient machine learning 
over the past decade has matured to the degree to where practi-
tioners have an (albeit rapidly evolving) set of techniques to make 
on-device ML a reality. The key idea is to shrink, optimize, and 
compress models, while simultaneously maintaining their accuracy. 
To achieve this, practitioners develop strategies for how to best 
apply model compression techniques to minimize the amount of 
computational resources needed. Product designers, tool-builders, 
and ML practitioners today should be considering the benefts of 
on-device ML for their users: 

First, on-device ML can be an enormous win for personal privacy. 
While standard practice today is to send a user’s (encrypted) data 
over a network to servers for ML inference, on-device ML cuts out 
this dependency such that a user’s personal data never leaves their 
device. Beyond inference, pre-trained models can be fne-tuned on-
device to adapt to an individual user’s preferences, while keeping 
those preferences private and local [10, 49, 54]. 

Second, models on-device enable intelligent user experiences 
where they would not be possible otherwise. For example, compu-
tational photography models within mobile cameras run inference 
at high frame rates (e.g., 30 frames per second), which would not 
be possible if relying on the availability of a distant server. 

Third, by going ofine, on-device ML can create not only faster 
but also more portable experiences. Since no data is sent over a net-
work, users can still interact with ML-powered features in situations 
without internet access or cellular service. This has the potential 
to broaden access of AI/ML features in more geographic regions, 
including rural and remote areas [99]. By forgoing a network en-
tirely, ML-powered features can run faster and remain responsive 
by alleviating network latency in an “ofine” mode [23]. 

Lastly, removing the reliance on servers for ML inference has 
economic and environmental impact. On-device ML cuts out the 
cost of a server, which may help individuals, non-profts, or smaller 
tech frms that previously could not aford server upkeep to now 
deliver ML-powered features to their users. By reducing society’s 

https://doi.org/10.1145/3613904.3642109
https://doi.org/10.1145/3613904.3642109
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613904.3642109
mailto:domoritz@apple.com
mailto:donghao@apple.com
mailto:mkery@apple.com
mailto:fredhohman@apple.com
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613904.3642109&domain=pdf&date_stamp=2024-05-11


CHI ’24, May 11–16, 2024, Honolulu, HI, USA Fred Hohman, Mary Beth Kery, Donghao Ren, and Dominik Moritz 

reliance on external servers, on-device ML may help reduce the 
carbon footprint of the cloud [73]. 

In this paper, we seek to advocate for on-device ML by flling a 
crucial gap: while efcient ML research and algorithmic advances 
have progressed tremendously [25, 37, 68, 91, 122, 126], there cur-
rently exists little pragmatic guidance [76] in literature, online, in 
books, or otherwise, for people wanting to create on-device ML 
user experiences. On-device ML requires both clever algorithmic 
and user experience design, making this a fundamentally interdis-
ciplinary problem that has received limited attention outside of ML 
venues. Our work addresses: RQ: How should a broader audi-
ence of HCI and ML practitioners today optimize powerful 
models to design on-device, ML user experiences? 

To curate pragmatic guidance, we interviewed 30 expert industry 
practitioners who are uniquely experienced with designing, devel-
oping, and deploying on-device ML at scale. We capture the hard-
won knowledge, insights, and tricks-of-the-trade that are tradition-
ally omitted from technical ML publications. We draw connections 
between the design of ML user experiences and the compression 
strategies experts use to match design goals. We contribute: 

• Tacit knowledge that 30 expert practitioners have de-
veloped around the design processes, trade-ofs, and strate-
gies that go into deploying efcient on-device ML. Many 
decisions around optimization and compression strategy 
stem directly from user experience and product design. 

• A characterization of the key challenges practitioners 
face when creating efcient models. Examples include the 
tension between optimizing performance against accuracy, 
and the necessity to work with hardware-level details. 

• Distilled design recommendations for interactive in-
terfaces, tooling, and systems that show promise to help 
practitioners optimize models and ultimately proliferate on-
device ML experiences. 

We conclude by discussing where the broader HCI + AI/ML 
research, design, and practitioner communities can engage in ef-
cient, on-device ML. We hope the results from this deep dive into 
a nascent area of ML user experience design helps spotlight its 
interdisciplinary importance and inspires others to contribute. 

2 RELATED WORK IN HUMAN-CENTERED 
ML AND MODEL OPTIMIZATION 

Our work attempts to bridge the Machine Learning, Ubiquitous 
Computing, Mobile Computing, and Human–Computer Interac-
tion (HCI) communities, to build common language around an ML 
topic with broad, intersectional impact. Our biggest challenge is 
in situating this research where no direct prior work exists. In 
this section, we anchor our work in two main threads of HCI re-
search. First, overlapping with the HCI community, the Ubicomp 
and Mobile computing communities have long used model com-
pression for on-device ML to make new user experiences possi-
ble [24]. Our work complements this literature by consolidating 
together strategies across many use cases, with the aim of broad-
ening the audience of practitioners who can contribute to creating 
on-device ML systems (Section 2.1). Second, our research contin-
ues a line of HCI work synthesizing lessons from real-world ML 

practice [7, 8, 12, 42, 60, 88, 119], and we extend prior work into a 
previously unconsidered area of ML (Section 2.2). We situate our 
work in both of these directions, and end by covering related work 
on model efciency for on-device ML itself (Section 2.3). 

2.1 Ubiquitous Computing: Deploying ML on 
Mobile & Edge Devices 

Challenges of on-device ML often occur in the context of mobile 
or edge computing [16, 75, 131]. Edge computing refers to small 
embedded hardware, wearables, or internet-of-things (IoT) devices 
where at least some computation is performed on-device (the “edges” 
of a network) rather than by a central server [75]. Example uses of 
compressed neural networks include facial recognition on mobile 
devices [129], activity recognition on cameras [71], gesture recogni-
tion on smartwatches [117], and respiratory monitoring on phones 
and smartwatches [15, 20, 61]. Since efciency is critical for edge 
devices, the Ubiquitous computing, Mobile computing, and IoT re-
search communities have contributed model compression advances 
around dynamic models [65, 70, 108], structured sparsity [62], and 
on-device training [51, 58, 120]. Our work difers from prior litera-
ture by not focusing on any single application or technique, and 
instead synthesizing practitioner strategies for model compression 
that can be used across use cases and hardware types. In our re-
search, we interviewed ML practitioners deploying to a variety of 
consumer devices, including edge hardware. We distinguish be-
tween device type only where advice difers for small embedded 
hardware, for example in Section 5.4.4. 

2.2 Human-Computer Interaction: Studying 
AI/ML Practitioners 

Over the past decade, interview studies from HCI have played an 
important role in giving the public access to learn from AI/ML work 
that otherwise happens behind closed doors [7, 8, 12, 42, 60, 88, 119]. 
Interviews with practitioners are uniquely suited to capture the 
kinds of process-oriented insight, stories, and tricks-of-the-trade 
that are traditionally omitted from technical ML publications. For 
instance, Amershi et al. [7] interview and survey AI/ML practition-
ers at Microsoft to gather best practices for production ML devel-
opment. Researchers have studied how AI/ML teams collaborate 
across diverse technical roles [79, 81, 124], or adopt new technology 
like AutoML [105–107]. Sambasivan et al. [88] used interviews to 
profle organizational struggles between balancing modeling work 
with data quality work. Holstein et al. [42] found key mismatches 
between academic AI/ML fairness concepts and the kinds of real 
fairness issues product teams grapple with. Many other aspects 
of AI fairness, accountability, transparency, and ethics have been 
found to be practitioner-driven, where design decisions and process 
have enormous impact [21, 43, 46, 66, 67, 72, 86, 87]. Like this prior 
work, we examine the production and practice side of on-device 
ML efciency to illustrate the connection between ML compression 
choices and their impact on holistic ML user-experience design. 

2.2.1 User Experience Design for AI/ML. Much of what the research 
community knows today about designing efective user experiences 
(UX) for AI/ML comes from interviews with seasoned product de-
signers [112, 119, 121, 123]. Leading technology companies have 



Model Compression in Practice CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

distilled design wisdom from their own product teams into AI/ML 
design guidelines as public, educational resources [114]. Examples 
include Apple’s Human Interface Guidelines on Machine Learn-
ing [3], Microsoft’s Human-AI Guidelines [8], Google’s People + 
AI Guidebook [4], and IBM’s Design for AI resources [2]. This 
body of work emphasizes that designing with machine learning 
requires new approaches from designers [2, 4, 8, 112, 118, 121]. Our 
paper contributes to this conversation by illustrating how power 
and performance issues of moving ML models on-device create 
real, tangible UX constraints for designers (for example, see Table 
2), and ofers concrete design strategies for creating efective user 
experiences around those constraints (for example, see Section 5.4). 

2.3 Machine Learning: On-Device ML & 
Compression Techniques 

The literature on efcient machine learning is broader than the 
scope of this paper, and for a comprehensive look we refer readers to 
the excellent survey papers cited here and below [17, 19, 22, 68, 101]. 
For neural networks, Menghani [68] breaks efciency into 5 areas: 
(1) compression techniques, (2) learning techniques, (3) automation, 
(4) efcient architectures, and (5) infrastructure & hardware. Our 
interviews with practitioners contained more discussion of (1) and 
(5), and some discussion of (2) and (4). We do not claim that this in-
terview study is a comprehensive look at efcient machine learning. 
Nonetheless, our work adds a fresh perspective to existing efcient 
ML literature: instead of detailing specifc optimization techniques, 
here we profle higher-level strategies for how practitioners put 
techniques into practice to enable user-experience goals. 

2.3.1 On-device Inference vs. On-device Training. It is worthwhile to 
distinguish between on-device inference and on-device training. On-
device inference refers to running an ML model on new input to get 
a prediction. These models are typically pretrained on a server, then 
delivered to a device. On-device training refers to either training a 
model from scratch or fne-tuning a model on a user’s device. While 
work in on-device ML encompasses both paradigms, in our paper 
we focus on the (currently) more common use case of on-device 
inference and leave on-device training for future work. Training 
on-device is generally considered harder, since training usually 
requires far more resources [131]. For a survey on the current 
challenges around on-device learning, see: [25, 64, 75, 131]. 

2.3.2 On-device Large Language Models and Foundation Models. In 
recent years, large language models (LLMs) and other generalized 
foundation models have raised the magnitude of size we expect from 
ML models [33, 74, 93, 104]. As models get bigger, so do the stakes 
for model compression and on-device efciency [13]. Beyond speed-
ing up inference [6], efciency methods for LLMs also aim to lower 
their enormous pretraining and fne-tuning costs. Examples in-
clude low-rank adaption methods (e.g., LRPD [128] and LoRA [48]), 
and parameter-efcient fne-tuning methods [26, 27, 30, 59]. The 
number of empirical works for compressing LLMs from 2023 alone 
would be difcult to capture, therefore we refer interested readers 
to the following surveys: [101, 116, 130]. We note that many of the 
techniques for compression that we discuss in Section 3 are the 
same key ideas being applied to LLMs and foundation models. 

2.3.3 Publicly Available Compression Resources. While most com-
pression techniques originate in academic work [17, 19, 22], many 
resources for practitioners can be found within web tutorials and 
ML toolkits. Examples include TensorFlow’s quantization-aware 
training method [96, 97]; PyTorch’s experimental support for quan-
tization [83], sparsity [84], and it’s accompanying examples [85]; 
Google’s quantization extension to Keras called QKeras [35]; Mi-
crosoft’s Neural Network Intelligence package and tool [69]; Intel’s 
Neural Compressor library [50]; and Apple’s MLX framework [39] 
and DNIKit [111]. Other examples that target specifc hardware 
include speeding up inference on FPGAs [28] and compressing Core 
ML models to run on Apple platforms [9]. In terms of other com-
munity eforts, the appropriately named TinyML community has 
published a book [110] and hosts community events and meetups. 

3 A PRIMER ON MACHINE LEARNING 
COMPRESSION TECHNIQUES 

To familiarize readers with model optimization, here we give a 
primer on common ML compression techniques. This background 
will help ground the study results and provide context for the 
remainder of the paper. Note we only cover common techniques 
mentioned by practitioners in our study—more exist. 

Model compression is a class of techniques used in on-device ML 
to reduce the computational resources a model consumes. While it is 
not important to know every detail of every technique, it is useful to 
understand the variety of techniques at a high-level, and how they 
can be combined for bigger savings [38]. This overview contains 
a brief description of each technique, and includes illustrations 
to build visual intuition. Note that each technique below is truly 
a family of techniques, each with many nuanced variations. For 
an in-depth review of the technical descriptions of compression 
techniques, see the following surveys: [17, 19, 22, 68]. 

3.1 Quantization 
Convert the inputs, outputs, weights, and/or activations of a model 
from high-precision representations (e.g., fp32) to lower-precision 
representations (e.g., fp16, int32, int16, int8, and even int2). 
At a high-level, this coarsens a model. For a detailed survey of 
quantization-specifc techniques and their variations, see [32]. 

3.2 Palettization (Weight Clustering) 
Map the weights of a model to a discrete set of precomputed (or 
learned) values [18, 115]. Inspired by an artist’s palette, the idea is 
to map many similar values to one average or approximate value, 
then use those new values for computing inference. In this way, 
palettization is similar in spirit to algorithmic memoization, a dic-
tionary, or a look-up table. Palettization can make a model smaller 
but does not make a model faster since it incurs look-up time. 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Fred Hohman, Mary Beth Kery, Donghao Ren, and Dominik Moritz 

3.3 Pruning (Network Sparsity) 
Remove the least-important parts of a neural network to make 
it smaller [41]. The motivating idea is that modern neural net-
works are much more dense and overparameterized than is actually 
needed. Since networks can contain billions of parameters, remov-
ing some or many parameters may not impact the fnal accuracy. 
Pruning is a large family of techniques [41]. 

3.3.1 Unstructured Pruning. A model may have neurons or weights 
that do not much afect a model’s decision [32]. In unstructured 
pruning, the least important neurons or weights can be aggres-
sively removed without afecting model accuracy [41]. Unstruc-
tured pruning has been shown to shrink a model by 10–100x its 
original size [41]. The major downside is that this leads to sparse 
matrix operations, which is a type of math that is slow on most hard-
ware. So although pruned models are small, they may be nearly as 
slow as the full-sized model [32]. 

3.3.2 Structured Pruning. Similar to unstructured pruning, the 
least important neurons or weights are identifed, however, in-
stead of removing (or zero-ing out) individual values, structured 
pruning removes entire structural elements, like channels or flters. 
Since structured pruning removes much bigger chunks of a model, 
less pruning will be possible without serious degradation in model 
accuracy [32]. However, by respecting the structure of the model, 
these pruned models maintain dense matrix operations, which keeps 
the model fast on most hardware [41]. 

3.4 Distillation 
Train a smaller model to mimic a larger model. Given a larger 
(teacher) model that is already highly accurate, transfer its learned 
features to a smaller (student) model by having the smaller model 
replicate the larger model’s output. One can then apply other com-
pression techniques to the student model for further optimiza-
tion [32, 82]. For a survey of distillation techniques, see [36]. 

3.5 Efcient Neural Architectures 
Some model architectures are specifcally designed to be small and 
efcient. Prominent example architectures include MobileNets [47, 
89], ShufeNets [125], and EfcientNets [95]. All of these examples 
are designed to improve the efciency of convolutions, which are 
vital to ftting computer vision models on-device [19]. One can use 
other compression technqiues on efcient architectures to create 
even smaller models [19]. 

3.6 Dynamic Models 
When thinking about ML applications, most people think of a single 
model with fxed inputs and outputs. Dynamic models difer in that 
they take into account the difering prediction difculty of each 
data input. Depending on the input, a dynamic model may adapt 
its preprocessing steps, computational path, or model choice all 
together [132]. While many types of dynamic models exist, we only 
discuss a selection of techniques that are mentioned later on. 

3.6.1 Early Exit Models. Allow for completing a prediction without 
the need to pass through the full model. Motivated by the fact that 
some data points are easier to predict than others, early exit models 
run intermediate feature representations through additional output 
layers to check if the prediction is sufciently correct. For example, 
if a model is already confdent about the current prediction, it 
fnishes early rather than continuing to the next prediction layer. 

3.6.2 Gated Models. Train a smaller, approximate model whose 
prediction decides whether or not to invoke a larger model. Similar 
to early exit models, some data points are easier to predict than 
others. A fast, smaller model gates a larger model, for example by 
again using the confdence of the initial prediction. At a high-level, 
these are systems of models that decide whether or not to spend 
extra compute if a prediction is still uncertain or unknown. 

4 INTERVIEW STUDY METHODOLOGY 

4.1 Study Protocol 
To capture emerging practices around efcient machine learning, 
we conducted semi-structured interviews [14, 53] with 30 ML prac-
titioners at Apple to study how they approach model compression 
in their own work. Our interview questions are outlined in Appen-
dix A. We gave participants ample time to fexibly speak to their 
specifc work and express other topics beyond our question set 
that they felt were important to efectively optimizing models [53]. 
The interviews took place between March and July 2022 with each 
conversation lasting from 45 minutes to 1 hour. For all interviews, 
one researcher lead the interview questions, while another took 
detailed notes. Where a participant approved, we also recorded 
conversations to refer back to during analysis. No compensation 
was given, since all participants were salaried employees. At the 
end of the study, we briefed participants and their teams on our 
results. Our study protocol was approved by an internal IRB. 

4.2 Participants and Recruitment 
As discussed in Section 2, in-depth interview studies with ML 
practitioners are uniquely suited to capture experts’ tacit knowl-
edge for the purpose of generating new, publicly-available guid-
ance [7, 8, 12, 42, 60, 88, 119]. Our organization has a rare concen-
tration of efcient machine learning experts, so we frst reached 
out to known individuals. We then used a snowball sampling strat-
egy to reach a broader network of people involved in efcient 
machine learning. To balance diferent perspectives, we sought 
practitioners working on ML for diferent domains and tasks (e.g., 
vision, language, and sensing). As the study evolved, we also chose 
new participants to help fll-in our largest areas of uncertainty. 
Our participants, listed in Table 1, include ML research scientists, 
engineers, and managers spanning a wide breadth of application 



Model Compression in Practice CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

domains. A natural saturation occurred when participants began 
to repeat know-how we had already recorded and began to only 
suggest participants we had already included. 

4.3 Qualitative Data Analysis 
The frst two authors conducted an iterative thematic analysis 
method to group common motivations, challenges, and best prac-
tices of model compression into categories [34]. As we conducted 
more interviews, we continually discussed and updated these cat-
egories to refect our new fndings. Each participant’s data and 
transcripts were independently reviewed and manually coded by 
the frst two authors at least twice using inductive coding [98]. In 
total, we spent 30+ hours interviewing participants and collected 
23,500+ words of additional notes outside of the audio transcripts. 
The fnal categories were split into two main sections: Section 5 
“Study Results” and Section 6 “Design Opportunities for Efcient ML 
Tools and Interfaces.” The composition of these two sections was 
formed by ordering major categories and hierarchically grouping 
within categories when relevant. 

4.4 Methodological Limitations 
While we found that learning from expert practitioners was tremen-
dously valuable, any interview study has limits for generalizability. 
Interview studies sufer from smaller population samples than other 
methods like a survey. We chose to hold in-depth exploratory con-
versations with each participant—which a survey cannot support 
as well [53]. On the other hand, we did not directly observe par-
ticipants conducting their efcient machine learning work, which 
limits the specifcity of our fndings. It was not possible to observe 
all participant’s activity or model artifacts due to the sensitivity of 
their work. Another concern is bias from a participant’s role in the 
domain [14], as well as the power dynamics between interviewer 
and interviewees [56]. This study was conducted solely within 
one organization, therefore practitioners may hold organization-
specifc beliefs and practices [90]. Despite our conscious eforts 
to recruit across ML application domains, we noticed a skew to-
wards vision-based applications on images, video, and 3D scene 
data. While interviews were conducted prior to the public rise of 
LLMs in late 2022 [74], many participants had NLP optimization 
experience, and as discussed in Section 2.3.2, the same overall ap-
proaches for efcient machine learning are currently being applied 
to LLMs and other foundation model modalities. 

Taking these limitations together, we caution readers to not 
consider the advice we detail from participants universally gen-
eralizable. However it is with confdence that we share the rich 
pragmatic guidance these 30 experts have to ofer. 

5 STUDY RESULTS 
To answer our primary research question RQ: How should a 
broader audience of HCI and ML practitioners today opti-
mize powerful models to design on-device, ML user experi-
ences?, we frst profle who is working in model compression today, 
as emerged from our participant pool (Section 5.1), and give a high-
level state of efcient machine learning in practice (Section 5.2). We 
then break down our results along a typical AI/ML development pro-
cess [1, 5, 29, 113], and use the machine learning workfow outlined 

by Amershi et al. [7] as a reference point to map onto (in sum-
mary: model and data requirements, model development and training, 
and model evaluation). Similar to specifying model requirements 
within ML [7], we characterize how practitioners design on-device 
machine learning experiences (Section 5.3) and plan model bud-
gets (Section 5.4). Next, we discuss how compression afects the 
model development and training process, and ofer considerations 
for how people can strategize applying compression to their own 
work (Section 5.5). Lastly, we describe how practitioners evaluate 
compressed models to balance accuracy versus performance—and 
avoid accidental compression artifacts (Section 5.6). 

Throughout the results we highlight actionable takeaways in 

call-out boxes . Note that some of these strategies are unique to 
model compression for on-device ML, while other strategies add 
a model compression twist to already-familiar software efciency 
ideas. We include both to balance domain-specifc novelty with the 
key advice for on-device ML. 

5.1 Participants and Emergent Personas 
Who does on-device ML efciency? Of the 30 people we interviewed, 
participants had an average of 7.1 (max 12) years experience with 
ML, and an average 4.1 (max 10) years experience with efcient ML. 
Our participants had diverse breadth of expertise across domains, 
detailed in Table 1. Rather than their job title, we found that par-
ticipant perspectives on efcient machine learning aligned more 
closely with their application focus. For the purpose of understand-
ing practitioners contributions, we defne three distinct, emergent 
personas that best describe our participants: 

• Compression Experts (E1–E13 in Table 1): Seasoned re-
search scientists and experienced engineers that lead on-
device ML initiatives, develop new compression techniques, 
and consult on machine learning optimization eforts. Given 
the amount of experience these people have, they often man-
age or lead teams. Example: An ML research scientist who has 
a PhD in model compression and is developing novel techniques 
for model optimization. 

• Machine Learning Practitioners (P1–P11 in Table 1): ML 
engineers and data scientists that build and deploy models 
on-device where certain optimization budgets must be met. 
These people use compression as a means to an end rather 
than solely studying efcient machine learning. Example: 
An ML engineer optimizing a model’s size to shrink it to 1MB 
while maintaining high accuracy. 

• Tooling Engineers (T1–T6 in Table 1): Engineers and 
developers that focus on building frameworks, infrastructure, 
and tools for efcient machine learning. Example: A software 
engineer building and maintaining an organization-wide tool 
to help others compute efciency metrics. 

Comparing the personas, we see clear diferences between appli-
cations. For example, compression experts are heavily (and nearly 
exclusively) focused on research, ML practitioners work across the 
most diverse set of domains (e.g., vision, NLP, sensing, multi-modal 
models, fairness, and hardware), and tooling engineers focus on 
internal tools and compression algorithm implementation. Through-
out the paper, we label representative quotes from participants by 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Fred Hohman, Mary Beth Kery, Donghao Ren, and Dominik Moritz 

Table 1: A summary of the 30 participants from the interview study. Participants are grouped by three emergent personas: 
Compression Experts (E), ML Practitioners (P), and Toolkit Engineers (T). Participants indicated the number of years they have 
spent working on machine learning (light blue squares), and of those years how many have been spent working on model 
compression and optimization specifcally (dark blue squares). 

ID Experience (Compression / ML Years) Job Title (Manager ✓) ML Application 

Compression Expert 

E1 10/12 ML Manager (✓) Efcient ML research 
E2 7/12 ML Manager (✓) 3D computer vision 
E3 5/12 ML Manager (✓) Efcient ML research 
E4 5/10 ML Engineer (✓) 3D computer vision 
E5 9/9 Research Scientist Efcient ML research 
E6 6/8 ML Engineer (✓) Efcient computer vision 
E7 5/8 ML Engineer (✓) 3D computer vision 
E8 2/8 ML Manager (✓) Efcient ML research 
E9 5/6 ML Engineer (✓) Efcient computer vision 
E10 5/6 Research Scientist Efcient ML research 
E11 5/5 ML Engineer Efcient ML research 
E12 5/5 Research Scientist 3D computer vision 
E13 3/5 ML Engineer 3D computer vision 

ML Practitioner 

P1 6/10 ML Manager (✓) Efcient computer vision 
P2 4/10 ML Engineer Machine translation 
P3 3/10 Research Scientist (✓) ML sensing 
P4 4/9 ML Engineer Machine translation 
P5 5/8 Software Engineer Computer vision 
P6 1/6 ML Engineer Multi-modal ML 
P7 1/6 ML Engineer Multi-modal ML 
P8 2/5 ML Engineer ML fairness 
P9 3/4 ML Engineer ML hardware 
P10 3/4 ML Engineer 3D computer vision 
P11 1/4 Software Engineer (✓) Multi-modal ML 

Tooling Engineer 

T1 5/10 ML Manager (✓) Efcient ML tooling 
T2 3/6 Software Engineer Efcient ML tooling 
T3 2/6 Software Engineer ML fairness 
T4 4/4 Software Engineer Efcient ML algorithms 
T5 3/3 Software Engineer Efcient ML algorithms 
T6 2/2 Software Engineer Efcient ML tooling 

their personas to illustrate the main fndings from the study. The recall, and others. To many readers, this characterization may sound 
persona labels ofer additional context for situating a participant’s like a job for an automated optimization algorithm. However, a 
background and perspective into the larger discussion. crucial fnding of our results is that automation is not yet possible, 

do to the degree of ML, product design, and human expertise that 
goes into creating on-device applications. Experts emphasized there 

5.2 The State of Efcient ML in Practice is no single solution, “silver bullet” [E12], “turnkey solution” [E5], 
Creating an efcient machine learning model is a “large design or “golden recipe” [E7] for successfully building efcient machine 
and constrained optimization problem” [E5], where practitioners learning models. Partially, this is due to the rapidly moving-target of 
have to weigh decisions between many model performance metrics, new state-of-the-art model architectures and new ML applications 
such as model storage size, inference latency, power usage, device that may require a custom approach. 
temperature, and model behavioral metrics such accuracy, precision, 



Model Compression in Practice CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

�������
�������

�������

������������
������ (&%$��""�& 

������).,�

Figure 1: Practitioners start with a feasibility model (A), 
which is a model of any size that demonstrates that the ML 
task works. Next, an architecture search looks for a smaller 
model that is equivalent to (A) and suitable for devices (B). 
A team decides a budget based on how much more efcient 
model (B) must be to deploy. Practitioners use techniques to 
compress their model (B) to reach the budget (C). 

“[Compression] works super well sometimes, but some-
times totally fails. Each project is too dependent, recipes 
tend to only work in some situations.” — P2, P6, P7 

The expertise for creating efcient ML models is currently held 
by a relatively small subset of ML practitioners, where “knowledge 
is handed-down from the few who know how to do it successfully,” 
[E3]. These people are referred to as artisans and “based on earlier 
experience, know it’s possible” [P10] to create highly efcient models. 
Reducing a model’s size by half, or by an order of magnitude, takes 
additional time and considerations [E7]. “It’s like black magic or 
the dark arts, but you will get better with time,” [E7]. Readers may 
recognize the “dark arts” or “artisan” language from earlier days of 
contemporary ML [40, 80], before any real widespread knowledge 
base was established. We hope these study results support growing 
such a knowledge-base for efcient machine learning, and it’s role 
within a holistic ML process: 

“[Efcient ML] means a lot of things to diferent people. 
Specifc techniques on models weights help reduce size, 
but to get an efcient model comes from more careful de-
sign of the loss function, the system, which parts should 
and should not be modeled with ML.” — E5 

In practice, building efcient ML models describes the process of 
either building a new model from scratch or modifying an existing 
model to shrink it enough to ft performance constraints, such 
as model size, latency, power consumption, and even heat [P3]. 
Newcomers often gravitate towards the latest model compression 
techniques from literature as a frst-step, while experts who consult 
on these projects encourage taking a step back to consider the entire 
data and model lifecycle: “Don’t do [model compression] blindly. 
Don’t do [model compression] in a rush,” [T1]. “Philosophically, [you] 
need to look at whole problem, not as an afterthought,” [E3]. 

In addition to barriers of overall experience, efcient ML work 
difers perhaps most signifcantly in how much it requires a deep 
understanding of hardware details. Low-level hardware details are 
not something that typical ML or software engineering usually 
needs to consider. “[ML engineers] feel a bit intimated, and people 
don’t feel like they understand this stuf well,” [T2]. 

5.3 The Metrics of Efcient, On-Device Models 
For many practitioners we spoke to, efcient machine learning is 
of immediate importance to their work in developing new product 

features. Efciency is a deciding point on which features get ap-
proved to ship to users, so efcient ML enables user experiences 
that otherwise simply could not exist [T5, P3, E12, P2, E9]. 

“Who cares if we can detect X if your model takes too 
much space? It will never make it to engineering re-
quirements.” — P3 

As an umbrella term, efciency encompasses many metrics. Com-
mon metrics that practitioners linked to user experience are sum-
marized in Table 2. Some may be familiar with metrics commonly 
considered in ML workfows, such as latency and model storage 
size. Other metrics may come as more foreign to an ML engineer 
accustomed to deploying their model server-side, e.g., device tem-
perature. When a user is holding and carrying around a device all 
day, metrics like heat and battery life impact are crucial. 

The prioritization of efciency metrics depends on the model 
type and its intended usage. While diferent practitioners we spoke 
to were focused on optimizing diferent aspects of efciency, they 
all had a shared concept of a model budget. 

5.4 Deciding Model Budget 
A model budget encompasses thresholds for speed, accuracy, size, or 
the amount of any specifc resource a model is allowed to consume. 
Model budgets are created individually per model, and are based as 
much in product and UX design as they are in device constraints. 

5.4.1 Budgeting by Technical Feasibility. For new and novel ML 
applications, it is simply unknown on the onset how computational 
intensive a model might be. Practitioners refer to reported metrics 
from related ML research and an organization’s other models to 
sketch out an initial budget: 

“At the beginning, [we do a] ‘back of envelope calcula-
tion’ where things need to be as honest as possible to 
what’s realistic. At the beginning, you’re more focused 
on accuracy. Over time there is refnement.” — E7 

A common refnement practice is outlined in Figure 1. First, ML 
engineers will work on a “feasibility” model simply to see if the ML 
task “is possible at all” [P3]. Once the feasibility model works at 
sufcient accuracy (Figure 1A), engineers work on an architecture 
search to fnd a smaller, more efcient model that achieves the 
accuracy goal (Figure 1B) [P3, E7]. Next, the budget is refned based 
on the potential to shrink the model using compression: “given 
[an] accuracy goal, what is the biggest percentage reduction possible?” 
[E11]. Some teams do this reduction estimation on their own, while 
others bring in ML compression experts [T5]. Since the compressed-
model budget (Figure 1C) is often estimated before engineers embark 
on model compression, the budget remains open to refnement, 
subject to product design constraints. Ultimately, if an ML-powered 
feature requires a strict model budget, the model will not ship until 
engineers have found a way to reach those thresholds [P3]. 

5.4.2 Budgeting by User’s Experience of a Model. Many aspects of 
budgeting come directly out of product feature design for where, 
when, and how often a model will be running. 

One-Time, Real-Time, or All the Time? Latency budget is 
typically a per-feature UX decision dependent upon how a user 
perceives the model output and how often the model needs to run. 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Fred Hohman, Mary Beth Kery, Donghao Ren, and Dominik Moritz 

Table 2: Key aspects of on-device ML efciency that impact user experience. 

User Perceivable Metrics Negative User Impact 

Model storage size 

Power usage 

Device temperature 

Inference latency 

FPS (frames per second) 

Modern deep learning models can easily grow to gigabytes. Devices have fnite storage, so a model 
must not occupy so much space that it interferes with a user storing their own content. 

Users expect their devices to have long battery lives, but a resource-intensive model can quickly 
drain a battery. Addressing battery drain is particularly challenging for older devices with lower 
battery capacity and health. 

ML models that consume lots of computational power at once can heat up a user’s device to where 
it is uncomfortably warm to the touch. Heat can also trigger thermal throttling, where the device 
slows down to avoid over-heating. 

Taking a long time to run inference can be frustrating for a user waiting on the result, and can 
make the experience feel unresponsive. 

A special case of inference latency. When processing live inputs (e.g., video), this latency can create 
delays that makes the output appear choppy or unresponsive. 

All metrics: model tested during high 
device resource load 

Resources are shared. A user’s device may be running many things simultaneously, including 
multiple ML models. A single model that demands too many resources will slow everything down. 

For example, in a photography app when tagging people in a new 
photo, a model needs to work fast enough so that users do not notice 
a delay. Models on-device remove the wait on network response 
times, which make these latency budgets easier to achieve [P2]. 

Models that only need to run once generally have a looser re-
source budget than continuous models. For models running in 
real-time, only a few milliseconds per inference may be the maxi-
mum budget [P1]. This is most crucial in real-time scenarios where 
the user can perceive the model working, such as in live video 
applications [E13]. A user will notice if their video feed appears 
choppy or a background flter appears delayed. For this reason, 
latency budgets need to be as low as possible. Similarly, strict la-
tency budgets are given to models that need to run all the time, i.e., 
“always-on”. Always-on models are continuously using the device’s 
resources, so they are required to be as quick and lightweight as 
possible. Some always-on models require a timely response to the 
user, for example, an always-on model that listens for a user to 
trigger a voice-assistant. 

User Opt-In or Background Task? There are some applica-
tions where ML is the primary enabling technology, such as voice 
assistants or language translation apps. If a user explicitly takes 
action to trigger a model, the user is in control of when the model 
runs (or does not run). Product designers will allow models a larger 
budget for power and compute resources when a user explicitly 
opts-in [E11, E7, P2]. It is also common to have supporting models 
running in the background. Similar to any other background task, 
these models require a strict budget to stay unobtrusive: 

“If the user will never perceive the model, we still want 
the memory footprint to be inconspicuous so it doesn’t 
interfere with them using their device.” — E7 

Can it Wait for a User to Sleep? Many devices today will 
download and install routine updates at night, or whenever the de-
vice’s user sleeps and has their device connected to power. Updates 

are intensive computational tasks that can be disruptive to normal 
device function, thus it is conventional to wait until a user is not 
actively using their device to initiate. By the same logic, scheduling 
a model to run overnight is a good option if the model’s output is 
not something needed immediately. If a user’s device is plugged in, 
this also alleviates the concern of a model draining battery. Disrup-
tion to the user is minimized, so models running overnight are also 
free to take a longer time with a bigger resource budget [E13, P3]. 

Strategy #1: First estimate the accuracy and latency of the 
original model architecture you want to run on-device. Then 
estimate how often the model needs to run (less often is “eas-
ier”) and what it needs to deliver (less accurate is “easier”) 
to budget the worst-case performance that will be acceptable 
for your user experience. The gap between your starting es-
timate and worst-case budget will tell you how feasible your 
on-device ML plan is. 

5.4.3 Top-down Budget by Application & Device. As illustrated in 
Figure 2, an application or device has fnite resources—and ML 
models are only one component of a system. For this reason, major 
budget allocation is typically decided by people with far reaching 
views and ownership in an organization [E1, P1, T1, P9]: 

“ [The product lead] looks at budget for whole feature 
and allocates budget to individual models from there. 
There are dozens of algorithms. [Each model] gets bud-
get based on priority, practicality, and executive deci-
sions on what is the most important algorithms to give 
space/time to.” — T1 

The difculty of hitting budget can vary enormously depending 
on the model. Thus, negotiation over budget allocations can con-
tinue and evolve until late in development [P1]. 



Model Compression in Practice CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

Application Budget

ML ModelsAll Other Features

9.41 MB Total

Figure 2: Models needs to share space with the rest of an 
application. Model budget typically refects how “valuable” 
a model is compared to all other features of the application. 
The above hypothetical example shows how much budget a 
model (blue) has in the overall system. 

Size Budget Any one application should not take up too 
much disk space on a device. The challenge is that as more and 
more new features make use of ML, there are more models to ft in 
the same amount of storage: 

“Because of [neural networks], and the rising popular-
ity of huge transformer models, compression becomes 
more and more important.” — E9 

Power Budget A model’s power budget is a measure of how 
much battery it is permitted to use. Power consumption of a model 
can be tricky to estimate, and should be measured empirically on 
the target device for the most reliable estimate [E6, T4, P9]. Once 
again, real-time or always-on models require much stricter power 
budgets, because they continuously draw power. Instead of measur-
ing power at one moment of execution, these continuous models 
can be thought of in terms of the total percentage or total minutes 
of battery they consume in a day [E6, P3, E7]. 

Heat Budget Closely related to power consumption is device 
temperature. In the words of E7: “ship high-quality ML models 
that don’t melt the user’s device.” By melting, E7 refers to both a 
device that is uncomfortably warm to the touch, and a device that 
has been forced into thermal mitigation. Thermal mitigation, or 
thermal throttling, is when a device slows down processing to 
protect itself from overheating. Hot and slow devices makes for a 
terrible user experience that should be avoided. Thus, memory and 
power budgets must be set according to thermal measurements [E6, 
E7, E4, E1, E2]: “Heat throttling is everyone’s budget!” [E4]. 

Multiple Models in Concert. A development team may measure 
the power, latency, or memory load of a single model as they de-
velop it, but testing a single model in isolation is insufcient in 
situations where multiple models are powering an app or expe-
rience at the same time [E6, E13, E10]. Multiple models running 
simultaneously will afect the overall memory pressure experienced 
by device at any moment, and thus the latency of each model as 
well as total power consumption. For these situations, teams need 
to experimentally test models running in concert to get accurate 
measures of total consumption, and experimentally refne their 
budget for each individual model from there [E13, E10]: 

“You could use too much memory, and that’s a no-go. You 
don’t know that until you test on device. [The memory 
bound] is not something you can compute ahead. There 
are multiple models happening at once, so until they are 
all put together you can’t see exactly what the memory 
is going to be on a process.” — E13 

Strategy #2: Budget a model’s resources by it’s value-add 
to your overall experience. For a reliable estimate, run your 
model on the actual target devices early and often during 
model optimization. Measure compute usage, memory pres-
sure, battery consumption, heat, and your model’s storage size 
relative to the overall application. Run the model alone and in 
realistic, high-load scenarios where many process are running 
simultaneously to fnd out if your model is too resource greedy. 
Remember to not be a bad citizen: an ML feature that does not 
respect the resource needs of the overall device will result in 
a poor user experience. 

5.4.4 Edge, IoT, and Low-power Devices. Devices like laptops, tablets, 
and mobile phones have far more memory and power resources 
than smaller, low-power “edge” devices, such as wearables or IoT 
devices. For edge devices, budget is tight enough that even the bytes 
of the modeling code text itself can matter [E11]. For these devices, 
an expert recommended avoiding neural networks all together due 
to their high cost, and approximate the same accuracy as much as 
possible using the lowest profle conventional machine learning 
algorithms, such as decision trees [E11]. 

5.4.5 Gating & Variable-Budget Options. There may be features 
where it is not (yet) technically possible to ft the ML component 
entirely on device. One option is gating, where only some inference 
is done on-device: a small simplifed model lives on-device and is 
only highly accurate for common inputs. If the small model detects 
complex or uncertain inputs, it invokes a high-powered ML model 
that uses more resources, or it sends the harder input to an external 
model on a server (see background Section 3.6.2) [E11]. 

Another option is variable budgeting. Product teams may be 
able to keep essential parts of a feature running smoothly under 
intermittent network availability by dynamically changing whether 
it uses higher-accuracy models or lower-accuracy models. Similarly, 
product teams can also choose to lower ML accuracy when needed 
to keep a feature running under high-device memory load: 

“So people think about model compression as static re-
sources, but the actual resources on device are dynamic 
based on what’s running. So it’s useful to on-the-fy 
change how much resources your model uses.” — E10 

For any model, there will be some size and efciency budget at 
which the model can be shrunk without any noticeable diference to 
the user. Below that threshold, accuracy degradation may negatively 
impact UX. A budget must balance the best model accuracy with 
the lowest possible resource footprint. 

Strategy #3: On-device ML does not need to be all-or-nothing. 
If current compression techniques cannot ft your ML feature 
on-device, try breaking the feature down into subtasks. Del-
egate smaller subtask models to live on-device and delegate 
larger ML workloads to a server if appropriate. Prioritize on-
device ML for feature subtasks that will help preserve your 
user’s privacy and keep critical functionality responsive in the 
absence of a network connection. 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Fred Hohman, Mary Beth Kery, Donghao Ren, and Dominik Moritz 

5.5 Applying Compression during Development 
Participants strongly emphasized that applying model compression 
is an investment. Compression techniques can take intensive engi-
neering efort to apply—and may fail. There are many circumstances 
that can cause one compression technique to generate enormous 
savings in one model, and completely fail to produce any savings 
in a diferent model, potentially after weeks of wasted engineering 
efort. While this work is not an exact science, we detail general tips 
and guidance from practitioners. Note that most of these techniques 
assume the model to compress is a neural network. 

5.5.1 Maximize Architecture Savings First. As shown in Figure 1, 
practitioners often start optimizing a model by fnding a smaller 
architecture frst. “If you’re running a common ResNet, look at strides, 
layer widths, and the number of layers” [T5]. Participants also rec-
ommended neural architectures designed specifcally for device 
efciency [E13, P5, E3, E11, T6], such as MobileNet [47]. Some ap-
plications do not need a heavy neural network; instead it might be 
possible, and even benefcial, to convert into a simpler decision tree 
or SVM [P3]. Architecture savings are seen as a more reliable frst 
approach before attempting compression [E13, E1]: 

“If you’re trying to reduce the size, model compression is 
efective, but more like a last resort. If you have a model 
that is just overkill, [compression] can shave of 20-40%, 
but just changing architecture to something smaller will 
have way bigger impact.” — E11 

Due to the high training cost of some models, participants dis-
cussed manual architecture selection (as opposed to auto-ML solu-
tions that automate various stages of ML development) based on 
their expertise: “It’s really trial and error by hand monitoring the 
hardware usage [and] identifying bottlenecks,” [E2]. 

5.5.2 Check the Architecture Against the Hardware. A critical caveat 
to architecture optimization is that it is easy to be fooled. A common 
mistake is to trust in the reproducibility of academic results: “Don’t 
expect what is “efcient” in a paper to exactly work in practice,” 
[E7]. The issue is that at the lowest level of computation, diferent 
hardware optimizes for diferent operations. Reported efciency 
measures are only reliable for the specifc hardware set they were 
run on. Even for specialized accelerator hardware designed for ML, 
the hardware will likely only support certain types of operations. 
Since hardware cannot be altered at the same pace as software, the 
latest neural layer architectures from papers may not be possible 
to run efciently on-device. Practitioners emphasized the need to 
adapt their neural architecture to better ft hardware [T5, E7, P9]. 

5.5.3 Test Against a Range of Hardware. In conventional machine 
learning work, and more generally much of modern software engi-
neering, it is not required to know the details of the hardware that 
code will run on. In efcient machine learning, hardware may be 
one of the greatest challenges when working in on-device ML: 

“You must consider diferent layers of abstraction of 
a model from code to hardware. This can be hard for 
developers to understand.” — E6 

To further complicate matters, often practitioners are not con-
sidering a single specifc hardware implementation, but rather a 
class of hardware. Classes of hardware include platforms such as 

mobile phones, smartwatches, tablets, computers, and others. Con-
sider a practitioner building a model for a smartphone. There are 
many types of smartphones, and versions of existing smartphones 
each with their own memory and compute details. Hardware also 
changes over time, and practitioners may need to consider older 
versions of hardware that have already been shipped. In the same 
way that front-end developers build responsive UIs and applications 
for multiple screensizes, so too do ML practitioners now need to 
optimize and test multiple hardware implementations specifc to a 
set of devices [E6]. 

Strategy #4: If starting from scratch, chose a model architec-
ture specifcally designed for mobile devices, but be aware 
that an architecture may not perform as-advertised due to 
implementation diferences in hardware. It is crucial to pro-
fle models on your physical target hardware—and for every 
hardware version you aim to support. Older devices usually 
have fewer compute resources for your model. 

5.5.4 Determine if a Model is Memory Bound or Compute Bound. 
Another useful strategy is to consider ahead which metrics are 
likely to be the biggest issue for a model type [T5]. A model is 
memory bound if the size of the model or the size of the data is the 
biggest issue. A model is compute bound if the speed/latency of the 
model is the biggest issue. For instance, “Computer vision tends to 
be memory bound and not compute bound. It’s fast but the data sizes 
are massive” [T5]. Participants also suggest going layer-by-layer to 
identify bottlenecks since individual layers can be either memory 
or compute bound individually [E2]. 

If memory-bound, architecture changes, sparsity techniques, 
or palettization techniques can help reduce model size. On-disk 
size is considered the easiest memory savings to get from model 
compression [E13]. If data transfer size is causing the memory is-
sue, reducing data resolution for model processing can help, e.g., 
reducing video data from 1080p to 720p [E8]. If compute-bound, 
techniques like quantization can help speed up and simplify com-
plex matrix math. Quantization can also save memory since smaller 
numbers help keep computation in cache memory [E12]. Cache 
locality is a common latency bottleneck to check [E6, E12], that 
also helps with power problems: 

“Latency is easier than power to improve. You can check 
cache locality, moving data takes a lot of power so that’s 
a big one to check.” — [E6] 

5.5.5 Accuracy v. Efort Trade-Of. Practitioners we spoke with 
had a sense of “accuracy v. efort” [E6] or “risk v. reward” [E13] for 
some of the most common compression approaches. As a general 
heuristic, compression techniques that need little-to-no retraining 
will be cheaper to apply—but at the cost of steeper model accuracy 
degradation. Since some of these models take days, or more, to 
train, involving complex compression logic in the training process 
is costly. Practitioners must consider cost in money, time, and efort 
that implementing a specifc compression technique could take. 

($) Post-training Quantization. Quantizing a model’s weights 
after the model has been trained was widely considered the frst 
go-to compression technique for many applications. 



Model Compression in Practice CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

“So quantization is a big one. You can usually quan-
tize to 8-bit integers without losing accuracy. This isn’t 
always the case. You do need to be careful where you 
apply quantization. But generally it’s a pretty generic 
technique across diferent hardware. You can usually 
cut from fp32 to fp16 and can get speed up by going 
to integers.” — E4 

Since weight quantization can be done without additional train-
ing, it is considered cheap. 10/30 participants discussed using this 
approach [E6, P8, E9, T3, T5, T1, E13, E7, T2, T2]. Although post-
training quantization is considered “easy” [E9] as far as ML com-
pression techniques go, practitioners emphasized that it still often 
takes complex code to implement and there are many algorithm 
variations [32] to experiment with [T5]. For models that need high 
accuracy, post-training quantization may not be enough to hit bud-
get without unacceptable accuracy degradation [E9, E4, E13, E5]. 

($$) Compression with Fine Tuning. When model accuracy goes 
down after quantization or pruning, fne tuning can help recover 
the loss [32, 41]. Fine tuning a model costs training time, but is nec-
essary in many situations to recover accuracy. Pruning techniques 
almost always require fne-tuning on the pruned model [41]. 6/30 
participants discussed successfully utilizing this approach [P8, T3, 
T1, E8, E13, E10]. 

($$$+) Compression-aware Training. Though it introduces ad-
ditional complexity to model training, compression can be ap-
proached as yet another optimization that a model needs to learn 
during training. 11/30 participants discussed having experience 
with quantization learned during training [E6, E9, T5, E3, E5, E7, 
E10, E1, E12, T2, P10]. This approach is generally considered best-in-
class and often required when designing always-on ML experiences 
that require low latency, e.g., real-time computational photography 
models. Practitioners recommended training-aware compression 
when a model needs to be compressed signifcantly to meet budget 
while keeping high accuracy: 

“If you want to go to lower bit quantization, such as 
4 or below, it’s almost impossible to use post-training 
quantization because the diference in accuracy gets 
way too big. So for this level of compression you need 
to do training-aware compression.” — E9 

Some practitioners had less experience with learned sparsity 
techniques and called them “high risk, high reward” [E13] because 
they are much harder to control compared to post-training sparsity 
techniques. Although training-aware compression is considered 
the best form of optimization [32], a major drawback is that is 
must be included in initial model training: “Not starting early with 
compression is a dead end,” [E3]. 

Practitioners use their experience and early testing to judge 
how much compression a model will need. For example, large vi-
sion models may start far exceeding their size and power budgets, 
and require heavy compression to meet budget. In these scenar-
ios, training-aware compression is likely necessary, which requires 
planning ahead: “It has to be done from day 0, not day 100,” [E7]. 

For other applications, practitioners suggest estimating how 
much compression will be feasible with simple post-training quan-
tization. To estimate quantization savings before training a model, 

frst initialize the ML model architecture with random weights, 
then quantize, and test the model’s speed and size on-device. Even 
a coarse estimate may be worth getting a sense of the magnitude 
of savings from quantization [E13]: 

“[It] gives you a sense of how much quantization is going 
to help at all before you go through expensive training 
process.” — T5 

If post-training techniques produce results that are too far from 
budget goals, teams can then pivot to training-aware approaches. 

Strategy #5: Before you heavily invest in a particular com-
pression technique, start with a cheap estimate of how much 
savings you might expect to gain. For example, initialize a 
mobile-friendly architecture with random weights, then quan-
tize it. Profle this “stand-in” compressed model on-device and 
compare its efciency to your budget. If it meets budget, then 
quantization may be enough. If it is far of budget (such is the 
case with many real-time computer vision models), consider 
more intensive training-aware compression techniques. 

5.6 Evaluating Compressed Models: Efciency, 
Accuracy, and Artifacts 

The goal of model compression is to reduce a model’s size while 
preserving its accuracy, or what some refer to as “acceptable accu-
racy degradation” [E8]. In general, past a certain point, shrinking 
a model will likely degrade its accuracy. Conversely, in literature 
there are examples showing that compression can actually improve 
accuracy, by acting as a model regularizer and forcing the model to 
generalize better [55, 100]. This phenomenon is sometimes referred 
to as Occam’s Hill [41]: as light compression is applied, there can be 
an slight accuracy bump as the model is forced to generalize; how-
ever, as one increases the compression strength the model becomes 
too general to properly work and accuracy quickly drops. While 
these results have been observed on academic benchmarks, practi-
tioners said that their models tend to generalize quite well already, 
so most often they see little improvement from the regularizer ef-
fect of compression [E8, E1]. Thus, we focus this discussion on the 
much more common scenario where practitioners must wrestle 
with accuracy degradation. 

5.6.1 The Trade-of Curve Visualization. To empirically compare 
multiple compressed models and select the one that satisfes bud-
get requirements, practitioners typically plot a model behavioral 
metric (e.g., accuracy) on the y-axis against any performance met-
ric (e.g., model size, model latency, or power consumption) on the 
x-axis [102, 103]. This is illustrated in Figure 3. Each dot represents 
a model architecture and compression pair. These charts are called 
multiple names throughout diferent teams, including the trade-of 
curve, the accuracy Pareto curve, or the tuning curve. 

P3 described a scenario when optimizing over 6,000 small models. 
In their application, the ML model was already on the order of kilo-
bytes; therefore, they could retrain many new models quickly. Com-
paring thousands of models in parallel, they plotted the F1-score on 
the y-axis against the model size on the x-axis. This arrangement 
formed the usual curve. Teams then fltered out models that do not 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Fred Hohman, Mary Beth Kery, Donghao Ren, and Dominik Moritz 

Latency (ms)

Accuracy (%)

0 1 2 3 4 5

0

25

50

75

100

Power consumption (mw)

0 2 4 6 8 10

Figure 3: A common chart used for model comparison and 
selection, where the y-axis is a model behavioral metric (e.g., 
accuracy) and the x-axis is any number of performance met-
rics (e.g., latency or power consumption). Each blue dot rep-
resents one model trained with diferent architectures or 
compression schemes, and the red line indicates the accu-
racy budget threshold. Practitioners look for the “knee in the 
curve” across charts: choosing a model above the accuracy 
threshold that minimizes latency and power consumption. 
In these charts, the selected model is colored red. 

satisfy their budgets, and ultimately selected a single model in the 
“knee” of the curve that has the best balance between what metrics 
they care about (e.g., Pareto optimal). 

5.6.2 Compounding Changes Degrade Accuracy. A common chal-
lenge with maintaining accuracy is that model compression tech-
niques can compound in unintended ways. In some scenarios, small 
optimizations throughout a model build on one another, so by the 
time a data input reaches the end of a network, its prediction is to-
tally of. In ML, this phenomenon is similar to the concept of explod-
ing/vanishing gradients [11, 78]. The efect of this compounding 
error is not obvious to spot in beginning [E9]. For instance: 

“When you have addition that takes two quantized val-
ues to a quantized output, it’s not easy to check that the 
range of the inputs are the same as the output ranges. 
You tend to lose resolution in the output where one 
branch dominates the range, and you lose the range 
of the lesser branch. You need additional care to check 
that they have the same range tracking during the for-
ward quantization pass.” — E6 

For quantization, practitioners advise a “gut check” to ensure the 
quantized weights and activations match the ranges of the original 
model, or else accuracy will degrade [E6]. 

5.6.3 Robust, End-to-end Data Evaluation. Since the amount of 
success in model optimization varies signifcantly by architecture 
and task, “without a clear evaluation strategy you won’t know if 
you’re making things better or worse,” [E11]. Some ML-powered 
experiences are composed of multiple models working together. 
Participants said they frst test models individually to ensure they 
work standalone, then evaluate the multi-model systems to test 
compound efects [E10]. Practitioners said the curve visualizations 
(Figure 3) are often the output of evaluation pipelines. 

Many teams do extensive model evaluation, error, and failure 
analysis [T2, E12, P11, P6, P7, E10, T4]. “We cannot assume compres-
sion doesn’t change model behavior, so we look at confusion matrices 
and instances where the model gets it wrong” [E12]. In one project 
that P11, P6, and P7 worked on where small mistakes could lead to 
a poor user experience, they built “unit tests” for diferent curated 
testing sets to monitor accuracy over time. E6 also emphasized 
using data unit tests to observe how single instances move through 
a model to both understand how much computational change oc-
curs after compression and make the necessary adjustments to the 
model code. “Data so infuential to hitting accuracy targets” [E3]. 

Strategy #6: Compression can degrade the accuracy of a 
model and change its behavior in unpredictable ways. It is 
essential to create a robust evaluation pipeline (e.g., defn-
ing metrics, curating test sets) before you start optimizing 
your model, so that you can reliably observe shifts in model 
error afterwards. To prevent degradation from a failed opti-
mization, compare optimized models with varying amounts 
of compression to your original model, inspecting the metrics, 
subpopulation behaviors, and internals, such as weights and 
activations, to ensure they are within expected ranges. 

5.6.4 Model Compression Artifacts. As with other types of media, 
such as image, audio, and video data, if too much compression is 
applied it can produce compression artifacts: noticeable distortions 
in the media (Figure 4). For example, compressing an image too 
much can produce blurry and blocky shapes over the subject matter; 
compressing audio can change the sound quality and waveform 
of the music. Multiple participants describe scenarios where their 
model had artifacts, although they did not borrow this language 
from other types of media: 

“Compressing like 90% can make things unstable with 
strange side efects. It’s hard to fgure out when you 
compress too much.” — E13 

It is tempting to think of accuracy degradation as the only ML 
artifact; however, there are more subtle, even sinister implications 
depending on what a model is used for. For example, where some 
subpopulation of data is underrepresented in a dataset, e.g., at the 
tail of a distribution, it could be that ML compression techniques 
remove this tail, amplifying existing biases. Examples of this have 
been observed empirically in the few publications investigating 
robustness and evaluation of compressed models [31, 44, 45, 63, 77]. 

One specifc compression artifact example story was told from 
multiple participants. In the case of an object detection model that 
needed to run at a high frame rate, during development teams no-
ticed one day that the bounding boxes were jittering in their demo. 
This fnding was surprising, since the metrics from their most re-
cent model iteration were reporting no changes, but “there were 
some weird side-efects” [T5]. It was not until someone debugging 
the problem realized that they had applied quantization through-
out the neural network, including the fnal prediction layer. This 
coarsening of the data at the output produced correct bounding 
boxes, but resulted in a poor user experience. Another participant 
had seen this before, and remarked if the output of a model is “‘fne 
grain,’ don’t quantize” [T1]. 



Model Compression in Practice CHI ’24, May 11–16, 2024, Honolulu, HI, USA 
O

ri
g

in
a

l
C

o
m

p
re

ss
e

d

Images Audio ML Model

?

Figure 4: Illustrative examples of compression artifacts in 
images and audio, but what do machine learning model arti-
facts look like and how do we identify them? 

Generalizing from this example, one learning that teams have 
found is that when a model’s prediction needs to be continuous, 
smooth, or is user-perceivable at a high frame rate, it is best not to 
compress the fnal output layer [22]. Participants told us that other 
modeling tasks can be harder to optimize than classifcation [E5]. 
“Regression models have been an absolute nightmare to compress” [E7]. 
Anytime the output needs to be a continuous or foating point value, 
compression techniques can produce artifacts [E12]. 

5.6.5 Demoing User Experiences. ML-powered experiences can be 
dependent upon multiple models working in concert, and the “best 
way to test compound [model] efects is having end-to-end evalua-
tion” [E10]. Another strategy to catch artifacts is testing models 
“as close to the metal as possible,” i.e., loading the models on-device 
and building demo applications to run outside of lab environments. 
“Since diferent hardware are not bit-wise accurate, metrics won’t 
capture these changes” [E12]. Another practitioner told us “user ex-
perience diferences are the really important cases to isolate” [P5]. To 
fnd these user experience changes, teams have prioritized building 
demo applications where diferent models, e.g., a baseline model 
and a compressed model, can be dynamically toggled back and forth 
for testing [T4]. Some of these demos toggle between a model run-
ning on-device and a model running on a server [E12]. Interactive 
and live demos like these allow for ML teams to get feedback from 
other product stakeholders [E10]. They are particularly helpful for 
designers to get an overall “feel” of a model: interacting with a 
model in its intended environment to understand its capabilities 
and limitations [T4]: 

“Get [the user experience] in the hands of people as fast 
as possible.” — T4 

This notion of the “feel” of a model was described multiple times. If 
an “ML engineer retrains [the model] and says it’s better, we still need 
see if it feels better,” [T4]. To try and attribute the feel of a model to 
actionable development steps, practitioners show debugging modes 

on-device to observe live, real-time charts of a model’s prediction 
and confdence, to help fnd edge cases and drill into specifc errors 
that metrics may or may not capture [P11, P6, P7]. 

Strategy #7: Despite all the efort to create criteria and metrics 
to quantitatively measure and benchmark your model, your 
evaluation pipeline may not capture every aspect of your 
model’s performance and behavior. Even if your model passes 
evaluation, move it on-device, in the intended environment 
in which it will run, and get it in the hands of users to demo. 
There is no other way to capture the feel of an ML-powered 
user experience. 

6 DESIGN OPPORTUNITIES FOR EFFICIENT 
ML TOOLS AND INTERFACES 

Given the unique challenges to efcient on-device ML, where can 
human-centered ML researchers, practitioners, and designers start 
to engage? As efcient machine learning techniques are driven for-
ward by advances in hardware engineering and ML research, there 
remains a major barrier in practically applying these techniques 
for real-world features and user experiences. 

Tools infuence what is possible: “there is a gap between what is 
possible with machine learning and what [tools] are being used,” [E4]. 
Currently, the tooling for efcient on-device ML is underdeveloped, 
“homegrown and ad-hoc,” [E9]. Moreover, current tools focus on 
individual algorithms (Section 2.3.3) instead of the holistic process: 
“this is a newer area, many tools are specifc to a project and tend to 
be prototypes to prove feasibility,” [E9]. As we have demonstrated in 
this paper, there is considerable design planning, experimentation, 
and strategy that experts use to make on-device ML a reality. Proper 
tools could help educate practitioners to develop these skills: 

“Tooling is education products disguised as software. 
Better tools make it easy to do correct things and harder 
to do incorrect things.” — T2 

We next share interdisciplinary HCI + ML research directions for 
supporting practitioners. While the space of tooling opportunities 
is wide and will evolve over time, we provide a few actionable 
recommendations for future tools and interfaces that are ready for 
development today. 

6.1 Developing Intuition for Compression 
Although modern libraries for machine learning make it easier than 
ever develop models, that does not mean practitioners know how to 
best train, evaluate, and deploy models. Machine learning is an in-
herently iterative and and empirical practice [7, 80], and developing 
intuition for how models learn and behave is a major competitive 
advantage over blindly tweaking hyper-parameters. Interactive 
playgrounds that provide a safe environment where practitioners 
can quickly build and test their ideas could be a great onboarding 
experience for learning about efcient ML and model compression. 
There is already precedent for this within machine learning, where 
interactive and educational tools help learners develop intuition 
around how certain models train and make predictions. Examples 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Fred Hohman, Mary Beth Kery, Donghao Ren, and Dominik Moritz 

include include TensorFlow Playground [92] for small neural net-
works, CNN Explainer [109] for convolutional neural networks, 
GANLab [52] for generative adversarial models, and Difusion Ex-
plainer [57] for stable difusion models. These interactives typically 
run fully in-browser, enabling learners to access and experiment 
with ML techniques without installing software to needing access 
to extra compute. Moreover, they have been incorporated into ML 
curricula to help people gain complementary, hands-on experience 
for specifcs model categories. 

Imagine a playground for efcient ML, where practitioners could 
learn and build intuition about diferent compression techniques 
[E12], model architectures [E7], and their efect on hardware [P9]. 
Perhaps this playground could be web-based, where a small model 
is loaded in the browser running live inference. Users could select 
diferent compression techniques, with varying degrees of strength, 
and see the impact on the model, its metrics, and its predictions. This 
could help practitioners defne realistic budgets (Section 5.4), test 
diferent combinations of architectures and compression techniques 
(Section 5.5.1), and inspect the diference between compute-bound 
or memory-bound models (Section 5.5.4). 

6.2 Comparing Across Compression Schemes 
A common scenario in efcient model development is considering 
the trade-of between accuracy and performance (Section 5.6.1). 
While conventional ML development requires model comparison 
between architectures and hyper-parameters, the optimization met-
rics that practitioners must also navigate add additional complexity 
when moving models on-device [T5]. Consider the scenario of hav-
ing a well-performing model that does not hit a size budget. What 
do you do next? You can try every compression technique possi-
ble, but how do you ultimately select the best model that balances 
between the desired trade-ofs? In a similar process discussed in 
Section 5.6.3, one practitioner mentioned that they “like to see an 
overview of a model’s robustness before and after compression,” [P8]. 

Better tooling to support model comparison could help prac-
titioners compare a feasibility or baseline model (Section 5.4.1) 
against diferent compressed models to select the best model possi-
ble. There is rich opportunity for future work to investigate what 
to visualize and how. For example, fexible interfaces should handle 
visualizing the similarities and diferences between models, their 
internals, their outputs, and applied compression techniques, where 
each technique not only has a suite of hyperparameters but can be 
also be combined with one another. 

This line of work could also draw from existing work in experi-
ment tracking. P10 described a project where the models they were 
developing were small, such that they could generate thousands 
of candidate models. This participant always compared candidates 
against an uncompressed baseline model, and maintained docu-
mentation tracking their experimental history, with a few notes per 
model, so that other stakeholders could make an informed model 
selection. However, this required diligent efort by the developer— 
experimental histories tend to exist across multiple documents and 
can result in long tables of values where patterns can be hard to 
discover. Future opportunities for tooling point to model tracking 
systems that can generate interactive reports to help practitioners 
observe their model development history, while helping them select 

the best model (from potentially thousands of models) that passes 
their accuracy threshold and maximizes performance. 

6.3 Finding Model Bottlenecks for Targeted 
Compression 

In Section 5.5.4 and Section 5.6.4, practitioners discuss analyzing 
a model layer-by-layer. Targeted compression is the practice of se-
lectively optimizing specifc components of a model, for example, 
individual layers in a neural network. Currently, practitioners de-
scribed the process as tedious, manual, and time-consuming, where 
“you must go layer by layer, operation by operation,” [P11, P6, P7]. 
There exists a space of interfaces that could help practitioners look 
inside their models, by mapping metrics to specifc layers of a net-
work [T5], fnding the performance bottlenecks in a network [E5], 
comparing the input and output of these bottleneck layers [E9], 
and selectively optimizing them. 

Targeted compression tooling may also ease the difculty of 
thinking at the hardware level. E6 gave an example: once an on-
device model written in Python is compiled onto specialized hard-
ware, the operations are expressed by what the hardware can sup-
port, and is likely not as readable as documented Python code. To 
complicate matters, low-level hardware operations may not have 
a one-to-one mapping back to the original Python code, due to 
optimizations in the compilation process. Better tools could help 
practitioners perform analytics on their models to fnd bottlenecks 
and easily traverse between diferent layers of abstraction (e.g., 
model code and hardware operations). 

6.4 Evaluating Multi-model ML Systems 
It is often assumed that model evaluation is done on a single model, 
isolated in a “lab environment.” In practice, this is not the case. Not 
only are models integrated into larger apps or codebases, many 
modern ML-powered experiences are the result of multiple models 
working together. For example, models could be arranged in chains, 
where the outputs of one model are the inputs of another [E10]. 
If you compress one model, how does that impact downstream 
models? Recalling the concept of compounding error discussed in 
Section 5.6.2, small errors introduced in earlier models can com-
pound to produce bigger errors by the end of a model chain [E10]. 
E3 emphasized this challenge, saying that the future of ML driven 
user experiences will be accomplished through multi-model sys-
tems. When multiple models are running simultaneously, each can 
be evaluated individually, but also must be considered as a whole, 
which makes it “super hard to reason about,” [E3]. Future tools that 
generalize and can evaluate multi-model machine learning systems 
will have a big impact in helping practitioners build, debug, and 
make sense of large data-driven applications. 

6.5 Simplifed Hardware Testing 
One recommendation repeated by practitioners in this study was 
to measure model performance on device (Section 5.5.2). T4 em-
phasized that the performance of one model will like difer across 
diferent hardware (Section 5.5.3). However, testing on real hard-
ware can be a major barrier. Due the variety of mobile devices and 
diferent versions of hardware, it can be hard to build for multi-
ple hardware implementations simultaneously. The average ML 



Model Compression in Practice CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

developer (outside of a hardware company) may not have access to 
all versions of all devices their users might have. When it comes 
to future tooling opportunities, E6 says it best, “the tools need to 
expose and take care of the cases for diferent hardware to maximize 
the hardware efciency.” While there is undoubtedly room for ML-
hardware innovation here, for the purposes of this work assume 
this problem can be reduced to looping over a set of hardware and 
evaluating a model. With all these results, this problem could be 
cast as yet another comparison task, where tool designers need 
to enhance existing workfows to allow ML practitioners to track, 
organize, and see what hardware passed or failed certain criteria. 

6.6 Automating (Some) Compression 
Experiments 

While many of the practitioners we interviewed discussed creating 
efcient models as a human-in-the-loop iteration process, there are 
opportunities to automate applying diferent compression schemes 
and present results to developers. An apt analogy is what AutoML 
is to hyperparameter searching: instead of sequentially trying dif-
ferent compression schemes, perform a grid search and parallelize 
many diferent tests simultaneously. P3 was particularly excited 
about compression automation. Imagine mixed-initiative tools that 
take in a model and user-specifed budgets, runs through a suite of 
compression techniques to fnd all possible experiments that satisfy 
the budgets, and fnally presents a summary of recommended com-
pression recipes for a practitioner to choose from. Perhaps through 
tools like these we could even learn something about the behavior 
of compression itself. However, we do not expect the process of 
creating efcient models to be completely automated. Throughout 
our study, experts made it clear that successful model compression 
is an iterative development process (Section 5.2), but leveraging the 
strengths of automation where appropriate suggests rich opportu-
nity for mixed-initiative approaches for creating efcient models. 

7 LIMITATIONS & VALIDITY 
Optimizing and creating efcient models to run on mobile devices 
is still relatively new, and best practices are evolving alongside the 
rapid pace of ML research. Thus we expect not all the practices 
mentioned in this paper will stand the test of time. As discussed 
in Section 4, studying experts from a single organization naturally 
limits the perspective of this paper, therefore we also expect cer-
tain details of our fndings may not generalize. Nonetheless, we 
believe that the high-level strategies for on-device ML shared in this 
work—including budget design, strategies for investing in model 
optimization, and proper compression evaluation—will generalize 
to be useful for many diferent kinds of devices, domains, and ML 
user experiences. We are eager to watch how this interdisciplinary 
area of research progresses in the future and refect back on the 
practices outlined in this work to see which have remained, which 
have been removed, and which have been reinvented. 

8 CONCLUSION 
In this research we illustrated some of the pragmatic design consid-
erations that go into efcient on-device machine learning. While 
this paper is far less technical than related work from the ML litera-
ture, we feel the interdisciplinary bridge to UX and product design 

are critical to bringing on-device ML into more approachable and 
popular practice. Through the results of this study, we are able 
to spotlight the holistic, end-to-end considerations that experts in 
model compression have developed from translating ML research 
into intelligent, on-device ML experiences. 

ACKNOWLEDGMENTS 
We thank our participants at Apple for generously sharing their 
time and knowledge. We also thank the many colleagues that have 
given their feedback on the paper. Specifcally, we thank Kayur 
Patel who sparked early ideas for this line of research, as well as 
Mohammad Rastegari, Sachin Mehta, and Yannick Assogba for their 
advisement on this work. 

REFERENCES 
[1] 2018. What is the team data science process? Microsoft (2018). https://learn. 

microsoft.com/en-us/azure/architecture/data-science-process/overview 
[2] 2019. Design for AI. IBM (2019). https://www.ibm.com/design/ai/ 
[3] 2019. Human interface guidelines: Machine learning. Apple Human Inter-

face Guidelines (2019). https://developer.apple.com/design/human-interface-
guidelines/technologies/machine-learning/introduction 

[4] 2019. People + AI guidebook. Google (2019). https://pair.withgoogle.com/ 
guidebook/ 

[5] 2023. Machine learning workfow. Google (2023). https://cloud.google.com/ai-
platform/docs/ml-solutions-overview 

[6] Keivan Alizadeh, Iman Mirzadeh, Dmitry Belenko, Karen Khatamifard, Minsik 
Cho, Carlo C Del Mundo, Mohammad Rastegari, and Mehrdad Farajtabar. 2023. 
Llm in a fash: Efcient large language model inference with limited memory. 
arXiv preprint arXiv:2312.11514 (2023). 

[7] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece 
Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019. 
Software engineering for machine learning: A case study. In 2019 IEEE/ACM 
41st International Conference on Software Engineering: Software Engineering in 
Practice. IEEE, 291–300. https://doi.org/10.1109/icse-seip.2019.00042 

[8] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira 
Nushi, Penny Collisson, Jina Suh, Shamsi Iqbal, Paul N Bennett, Kori Inkpen, 
et al. 2019. Guidelines for human-AI interaction. In Proceedings of the 2019 CHI 
Conference on Human Factors in Computing Systems. 1–13. https://doi.org/10. 
1145/3290605.3300233 

[9] Apple. 2023. Optimizing models - Core ML Tools overview. https://coremltools. 
readme.io/docs 

[10] Apple. 2023. Personalizing a model with on-device updates. https: 
//developer.apple.com/documentation/coreml/model_personalization/ 
personalizing_a_model_with_on-device_updates 

[11] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. 1994. Learning long-term 
dependencies with gradient descent is difcult. IEEE Transactions on Neural 
Networks 5, 2 (1994), 157–166. 

[12] Umang Bhatt, Alice Xiang, Shubham Sharma, Adrian Weller, Ankur Taly, 
Yunhan Jia, Joydeep Ghosh, Ruchir Puri, José MF Moura, and Peter Ecker-
sley. 2020. Explainable machine learning in deployment. In Proceedings of 
the 2020 Conference on Fairness, Accountability, and Transparency. 648–657. 
https://doi.org/10.1145/3351095.3375624 

[13] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, 
Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma 
Brunskill, et al. 2021. On the opportunities and risks of foundation models. 
arXiv preprint arXiv:2108.07258 (2021). 

[14] Carolyn Boyce and Palena Neale. 2006. Conducting in-depth interviews: A guide 
for designing and conducting in-depth interviews for evaluation input. Vol. 2. 
Pathfnder International Watertown, MA. 

[15] Jagmohan Chauhan, Jathushan Rajasegaran, Suranga Seneviratne, Archan Misra, 
Aruna Seneviratne, and Youngki Lee. 2018. Performance characterization of deep 
learning models for breathing-based authentication on resource-constrained 
devices. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous 
Technologies 2, 4 (2018), 1–24. 

[16] Jiasi Chen and Xukan Ran. 2019. Deep learning with edge computing: A review. 
Proc. IEEE 107, 8 (2019), 1655–1674. https://doi.org/10.1109/jproc.2019.2921977 

[17] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 2018. Model compression and 
acceleration for deep neural networks: The principles, progress, and challenges. 
IEEE Signal Processing Magazine 35, 1 (2018), 126–136. https://doi.org/10.1109/ 
msp.2017.2765695 

[18] Minsik Cho, Keivan A. Vahid, Saurabh Adya, and Mohammad Rastegari. 2022. 
Diferentiable k-means clustering layer for neural network compression. In 

https://learn.microsoft.com/en-us/azure/architecture/data-science-process/overview
https://learn.microsoft.com/en-us/azure/architecture/data-science-process/overview
https://www.ibm.com/design/ai/
https://developer.apple.com/design/human-interface-guidelines/technologies/machine-learning/introduction
https://developer.apple.com/design/human-interface-guidelines/technologies/machine-learning/introduction
https://pair.withgoogle.com/guidebook/
https://pair.withgoogle.com/guidebook/
https://cloud.google.com/ai-platform/docs/ml-solutions-overview
https://cloud.google.com/ai-platform/docs/ml-solutions-overview
https://doi.org/10.1109/icse-seip.2019.00042
https://doi.org/10.1145/3290605.3300233
https://doi.org/10.1145/3290605.3300233
https://coremltools.readme.io/docs
https://coremltools.readme.io/docs
https://developer.apple.com/documentation/coreml/model_personalization/personalizing_a_model_with_on-device_updates
https://developer.apple.com/documentation/coreml/model_personalization/personalizing_a_model_with_on-device_updates
https://developer.apple.com/documentation/coreml/model_personalization/personalizing_a_model_with_on-device_updates
https://doi.org/10.1145/3351095.3375624
https://doi.org/10.1109/jproc.2019.2921977
https://doi.org/10.1109/msp.2017.2765695
https://doi.org/10.1109/msp.2017.2765695


CHI ’24, May 11–16, 2024, Honolulu, HI, USA Fred Hohman, Mary Beth Kery, Donghao Ren, and Dominik Moritz 

International Conference on Learning Representations. https://arxiv.org/abs/2108. 
12659 

[19] Tejalal Choudhary, Vipul Mishra, Anurag Goswami, and Jagannathan Saranga-
pani. 2020. A comprehensive survey on model compression and acceleration. 
Artifcial Intelligence Review 53, 7 (2020), 5113–5155. https://doi.org/10.1007/ 
s10462-020-09816-7 

[20] Ruixuan Dai, Chenyang Lu, Michael Avidan, and Thomas Kannampallil. 2021. 
Respwatch: Robust measurement of respiratory rate on smartwatches with 
photoplethysmography. In Proceedings of the International Conference on Internet-
of-Things Design and Implementation. 208–220. 

[21] Fernando Delgado, Stephen Yang, Michael Madaio, and Qian Yang. 2021. Stake-
holder participation in AI: Beyond “add diverse stakeholders and stir”. arXiv 
(2021). 

[22] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. 2020. Model compres-
sion and hardware acceleration for neural networks: A comprehensive survey. 
Proc. IEEE 108, 4 (2020), 485–532. https://doi.org/10.1109/jproc.2020.2976475 

[23] Google Developers. Accessed 2022. Why on-device machine learning? https: 
//developers.google.com/learn/topics/on-device-ml/learn-more 

[24] Sauptik Dhar, Junyao Guo, Jiayi Liu, Samarth Tripathi, Unmesh Kurup, and 
Mohak Shah. 2021. On-device machine learning: An algorithms and learning 
theory perspective. ACM Transactions on Internet Things (2021). https://doi. 
org/10.1145/3450494 

[25] Sauptik Dhar, Junyao Guo, Jiayi Liu, Samarth Tripathi, Unmesh Kurup, and 
Mohak Shah. 2021. A survey of on-device machine learning: An algorithms and 
learning theory perspective. ACM Transactions on Internet of Things 2, 3 (2021), 
1–49. https://doi.org/10.1145/3450494 

[26] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, 
Shengding Hu, Yulin Chen, Chi-Min Chan, Weize Chen, et al. 2022. Delta tuning: 
A comprehensive study of parameter efcient methods for pre-trained language 
models. arXiv preprint arXiv:2203.06904 (2022). 

[27] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, 
Shengding Hu, Yulin Chen, Chi-Min Chan, Weize Chen, et al. 2023. Parameter-
efcient fne-tuning of large-scale pre-trained language models. Nature Machine 
Intelligence 5, 3 (2023), 220–235. 

[28] Farah Fahim, Benjamin Hawks, Christian Herwig, James Hirschauer, Sergo Jin-
dariani, Nhan Tran, Luca P Carloni, Giuseppe Di Guglielmo, Philip Harris, Jefrey 
Krupa, et al. 2021. hls4ml: An open-source codesign workfow to empower 
scientifc low-power machine learning devices. (2021). arXiv:2103.05579 

[29] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. 1996. The KDD 
process for extracting useful knowledge from volumes of data. Commun. ACM 
39, 11 (1996), 27–34. 

[30] Zihao Fu, Haoran Yang, Anthony Man-Cho So, Wai Lam, Lidong Bing, and 
Nigel Collier. 2023. On the efectiveness of parameter-efcient fne-tuning. 
In Proceedings of the AAAI Conference on Artifcial Intelligence, Vol. 37. 12799– 
12807. 

[31] Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The state of sparsity in deep 
neural networks. arXiv preprint arXiv:1902.09574 (2019). 

[32] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, 
and Kurt Keutzer. 2021. A survey of quantization methods for efcient neural 
network inference. arXiv (2021). arXiv:2103.13630 

[33] Charlie Giattino, Edouard Mathieu, Veronika Samborska, Julia Broden, and 
Max Roser. 2022. Artifcial intelligence. Our World in Data (2022). 
https://ourworldindata.org/artifcial-intelligence. 

[34] Graham R Gibbs. 2007. Thematic coding and categorizing. Analyzing Qualitative 
Data 703 (2007), 38–56. 

[35] Google. 2019. QKeras. https://github.com/google/qkeras 
[36] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao. 2021. Knowl-

edge distillation: A survey. International Journal of Computer Vision 129, 6 (2021), 
1789–1819. https://doi.org/10.1007/s11263-021-01453-z 

[37] Renjie Gu, Chaoyue Niu, Fan Wu, Guihai Chen, Chun Hu, Chengfei Lyu, and 
Zhihua Wu. 2021. From server-based to client-based machine learning: A 
comprehensive survey. Comput. Surveys 54, 1 (2021), 1–36. https://doi.org/10. 
1145/3424660 

[38] Song Han, Huizi Mao, and William J Dally. 2016. Deep compression: Com-
pressing deep neural networks with pruning, trained quantization and hufman 
coding. (2016). 

[39] Awni Hannun, Jagrit Digani, Angelos Katharopoulos, and Ronan Collobert. 
2023. MLX: Efcient and fexible machine learning on Apple silicon. https: 
//github.com/ml-explore 

[40] Charles Hill, Rachel Bellamy, Thomas Erickson, and Margaret Burnett. 2016. 
Trials and tribulations of developers of intelligent systems: A feld study. In 
2016 IEEE Symposium on Visual Languages and Human-Centric Computing. IEEE, 
162–170. https://doi.org/10.1109/vlhcc.2016.7739680 

[41] Torsten Hoefer, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. 
2021. Sparsity in deep learning: Pruning and growth for efcient inference and 
training in neural networks. Journal of Machine Learning Research 22, 241 (2021), 
1–124. 

[42] Kenneth Holstein, Jennifer Wortman Vaughan, Hal Daumé III, Miro Dudik, and 
Hanna Wallach. 2019. Improving fairness in machine learning systems: What do 

industry practitioners need?. In Proceedings of the 2019 CHI Conference on Human 
Factors in Computing Systems. 1–16. https://doi.org/10.1145/3290605.3300830 

[43] Sungsoo Ray Hong, Jessica Hullman, and Enrico Bertini. 2020. Human factors 
in model interpretability: Industry practices, challenges, and needs. Proceedings 
of the ACM on Human-Computer Interaction 4, CSCW1 (2020), 1–26. 

[44] Sara Hooker, Aaron Courville, Gregory Clark, Yann Dauphin, and Andrea 
Frome. 2019. What do compressed deep neural networks forget? arXiv preprint 
arXiv:1911.05248 (2019). 

[45] Sara Hooker, Nyalleng Moorosi, Gregory Clark, Samy Bengio, and Emily Denton. 
2020. Characterising bias in compressed models. arXiv (2020). arXiv:2010.03058 

[46] Aspen Hopkins and Serena Booth. 2021. Machine learning practices outside big 
tech: How resource constraints challenge responsible development. In Proceed-
ings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society. 134–145. 

[47] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun 
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets: 
Efcient convolutional neural networks for mobile vision applications. arXiv 
abs/1704.04861 (2017). arXiv:1704.04861 

[48] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean 
Wang, Lu Wang, and Weizhu Chen. 2022. Lora: Low-rank adaptation of large 
language models. International Conference on Learning Representations (2022). 

[49] Rui Hu, Yuanxiong Guo, Hongning Li, Qingqi Pei, and Yanmin Gong. 2020. 
Personalized federated learning with diferential privacy. IEEE Internet of Things 
Journal 7, 10 (2020), 9530–9539. 

[50] Intel. 2020. Neural Compressor. https://github.com/intel/neural-compressor 
[51] Linshan Jiang, Rui Tan, Xin Lou, and Guosheng Lin. 2021. On lightweight 

privacy-preserving collaborative learning for Internet of Things by independent 
random projections. ACM Transactions on Internet of Things 2, 2 (2021), 1–32. 

[52] Minsuk Kahng, Nikhil Thorat, Duen Horng Polo Chau, Fernanda B Viégas, and 
Martin Wattenberg. 2018. Gan lab: Understanding complex deep generative mod-
els using interactive visual experimentation. IEEE Transactions on Visualization 
and Computer Graphics 25, 1 (2018), 1–11. https://poloclub.github.io/ganlab/ 

[53] Eleanor Knott, Aliya Hamid Rao, Kate Summers, and Chana Teeger. 2022. In-
terviews in the social sciences. Nature Reviews Methods Primers 2, 1 (2022), 
1–15. 

[54] Jakub Konečny,` H Brendan McMahan, Felix X Yu, Peter Richtárik, 
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies 
for improving communication efciency. arXiv preprint arXiv:1610.05492 (2016). 

[55] Aditya Kusupati, Vivek Ramanujan, Raghav Somani, Mitchell Wortsman, Prateek 
Jain, Sham Kakade, and Ali Farhadi. 2020. Soft threshold weight reparameteri-
zation for learnable sparsity. In International Conference on Machine Learning. 
PMLR, 5544–5555. 

[56] Steinar Kvale. 2006. Dominance through interviews and dialogues. Qualitative 
Inquiry 12, 3 (2006), 480–500. 

[57] Seongmin Lee, Benjamin Hoover, Hendrik Strobelt, Zijie J Wang, ShengYun 
Peng, Austin Wright, Kevin Li, Haekyu Park, Haoyang Yang, and Duen Horng 
Chau. 2023. Difusion explainer: Visual explanation for text-to-image stable 
difusion. arXiv preprint arXiv:2305.03509 (2023). 

[58] Youpeng Li, Xuyu Wang, and Lingling An. 2023. Hierarchical clustering-based 
personalized federated learning for robust and fair human activity recogni-
tion. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous 
Technologies 7, 1 (2023), 1–38. 

[59] Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky. 2023. Scaling 
down to scale up: A guide to parameter-efcient fne-tuning. arXiv preprint 
arXiv:2303.15647 (2023). 

[60] Q Vera Liao, Daniel Gruen, and Sarah Miller. 2020. Questioning the AI: Informing 
design practices for explainable AI user experiences. In Proceedings of the 2020 
CHI Conference on Human Factors in Computing Systems. 1–15. https://doi.org/ 
10.1145/3313831.3376590 

[61] Daniyal Liaqat, Mohamed Abdalla, Pegah Abed-Esfahani, Moshe Gabel, Ta-
tiana Son, Robert Wu, Andrea Gershon, Frank Rudzicz, and Eyal De Lara. 2019. 
WearBreathing: Real world respiratory rate monitoring using smartwatches. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 
3, 2 (2019), 1–22. 

[62] Edgar Liberis and Nicholas D Lane. 2023. Diferentiable neural network pruning 
to enable smart applications on microcontrollers. Proceedings of the ACM on 
Interactive, Mobile, Wearable and Ubiquitous Technologies 6, 4 (2023), 1–19. 

[63] Lucas Liebenwein, Cenk Baykal, Brandon Carter, David Giford, and Daniela 
Rus. 2021. Lost in pruning: The efects of pruning neural networks beyond test 
accuracy. Proceedings of Machine Learning and Systems 3 (2021), 93–138. 

[64] Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-
Chang Liang, Qiang Yang, Dusit Niyato, and Chunyan Miao. 2020. Federated 
learning in mobile edge networks: A comprehensive survey. IEEE Communica-
tions Surveys & Tutorials 22, 3 (2020), 2031–2063. https://doi.org/10.1109/comst. 
2020.2986024 

[65] Sicong Liu, Bin Guo, Ke Ma, Zhiwen Yu, and Junzhao Du. 2021. AdaSpring: 
Context-adaptive and runtime-evolutionary deep model compression for mo-
bile applications. Proceedings of the ACM on Interactive, Mobile, Wearable and 

https://arxiv.org/abs/2108.12659
https://arxiv.org/abs/2108.12659
https://doi.org/10.1007/s10462-020-09816-7
https://doi.org/10.1007/s10462-020-09816-7
https://doi.org/10.1109/jproc.2020.2976475
https://developers.google.com/learn/topics/on-device-ml/learn-more
https://developers.google.com/learn/topics/on-device-ml/learn-more
https://doi.org/10.1145/3450494
https://doi.org/10.1145/3450494
https://doi.org/10.1145/3450494
https://arxiv.org/abs/2103.05579
https://arxiv.org/abs/2103.13630
https://github.com/google/qkeras
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1145/3424660
https://doi.org/10.1145/3424660
https://github.com/ml-explore
https://github.com/ml-explore
https://doi.org/10.1109/vlhcc.2016.7739680
https://doi.org/10.1145/3290605.3300830
https://arxiv.org/abs/2010.03058
https://arxiv.org/abs/1704.04861
https://github.com/intel/neural-compressor
https://poloclub.github.io/ganlab/
https://doi.org/10.1145/3313831.3376590
https://doi.org/10.1145/3313831.3376590
https://doi.org/10.1109/comst.2020.2986024
https://doi.org/10.1109/comst.2020.2986024
https://ourworldindata.org/artificial-intelligence


Model Compression in Practice CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

Ubiquitous Technologies 5, 1 (2021), 1–22. 
[66] Michael Madaio, Lisa Egede, Hariharan Subramonyam, Jennifer Wort-

man Vaughan, and Hanna Wallach. 2022. Assessing the fairness of AI systems: 
AI practitioners’ processes, challenges, and needs for support. Proceedings of 
the ACM on Human-Computer Interaction 6, CSCW1 (2022), 1–26. 

[67] Michael A Madaio, Luke Stark, Jennifer Wortman Vaughan, and Hanna Wallach. 
2020. Co-designing checklists to understand organizational challenges and 
opportunities around fairness in AI. In Proceedings of the 2020 CHI Conference 
on Human Factors in Computing Systems. 1–14. 

[68] Gaurav Menghani. 2023. Efcient deep learning: A survey on making deep 
learning models smaller, faster, and better. Comput. Surveys 55, 12 (2023), 1–37. 

[69] Microsoft. 2021. Neural network intelligence. https://github.com/microsoft/nni 
[70] Rahul Mishra and Hari Prabhat Gupta. 2023. Designing and training of light-

weight neural networks on edge devices using early halting in knowledge 
distillation. IEEE Transactions on Mobile Computing (2023). 

[71] Rahul Mishra, Hari Prabhat Gupta, and Tanima Dutta. 2020. Teacher, trainee, and 
student based knowledge distillation technique for monitoring indoor activities. 
In Proceedings of the 18th Conference on Embedded Networked Sensor Systems. 
729–730. 

[72] Ceena Modarres, Mark Ibrahim, Melissa Louie, and John Paisley. 2018. Towards 
explainable deep learning for credit lending: A case study. arXiv (2018). 

[73] Steven Gonzalez Monserrate. 2022. The cloud is material: On the environmental 
impacts of computation and data storage. MIT Case Studies in Social and Ethical 
Responsibilities of Computing Winter 2022 (Jan 2022). https://doi.org/10.21428/ 
2c646de5.031d4553 

[74] Rajiv Movva, Sidhika Balachandar, Kenny Peng, Gabriel Agostini, Nikhil Garg, 
and Emma Pierson. 2023. Large language models shape and are shaped by 
society: A survey of arXiv publication patterns. arXiv preprint arXiv:2307.10700 
(2023). 

[75] MG Sarwar Murshed, Christopher Murphy, Daqing Hou, Nazar Khan, Ganesh 
Ananthanarayanan, and Faraz Hussain. 2021. Machine learning at the network 
edge: A survey. Comput. Surveys 54, 8 (2021), 1–37. https://doi.org/10.1145/ 
3469029 

[76] NVIDIA. 2023. NVIDIA deep learning TensorRT documentation - optimiz-
ing TensorRT performance. https://docs.nvidia.com/deeplearning/tensorrt/ 
developer-guide/index.html 

[77] Kelechi Ogueji, Orevaoghene Ahia, Gbemileke Onilude, Sebastian Gehrmann, 
Sara Hooker, and Julia Kreutzer. 2022. Intriguing properties of compression on 
multilingual models. arXiv preprint arXiv:2211.02738 (2022). 

[78] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. 2013. On the difculty 
of training recurrent neural networks. In International Conference on Machine 
Learning. PMLR, 1310–1318. 

[79] Samir Passi and Steven J Jackson. 2018. Trust in data science: Collaboration, 
translation, and accountability in corporate data science projects. Proceedings 
of the ACM on Human-Computer Interaction 2, CSCW (2018), 1–28. 

[80] Kayur Patel, James Fogarty, James A Landay, and Beverly Harrison. 2008. In-
vestigating statistical machine learning as a tool for software development. In 
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 
667–676. https://doi.org/10.1145/1357054.1357160 

[81] David Piorkowski, Soya Park, April Yi Wang, Dakuo Wang, Michael Muller, and 
Felix Portnoy. 2021. How ai developers overcome communication challenges 
in a multidisciplinary team: A case study. Proceedings of the ACM on Human-
Computer Interaction 5, CSCW1 (2021), 1–25. 

[82] Antonio Polino, Razvan Pascanu, and Dan Alistarh. 2018. Model compression 
via distillation and quantization. arXiv (2018). arXiv:1802.05668 

[83] PyTorch. 2018. Quantization. https://pytorch.org/docs/stable/quantization.html 
[84] PyTorch. 2019. Sparisty. https://pytorch.org/docs/stable/sparse.html 
[85] PyTorch. 2023. PyTorch Examples. https://pytorch.org/tutorials/ 
[86] Bogdana Rakova, Jingying Yang, Henriette Cramer, and Rumman Chowdhury. 

2021. Where responsible AI meets reality: Practitioner perspectives on en-
ablers for shifting organizational practices. Proceedings of the ACM on Human-
Computer Interaction 5, CSCW1 (2021), 1–23. 

[87] Samantha Robertson, Tonya Nguyen, and Niloufar Salehi. 2021. Modeling 
assumptions clash with the real world: Transparency, equity, and community 
challenges for student assignment algorithms. In Proceedings of the 2021 CHI 
Conference on Human Factors in Computing Systems. 1–14. 

[88] Nithya Sambasivan, Shivani Kapania, Hannah Highfll, Diana Akrong, Praveen 
Paritosh, and Lora M Aroyo. 2021. “Everyone wants to do the model work, 
not the data work”: Data cascades in high-stakes AI. In Proceedings of the 
2021 CHI Conference on Human Factors in Computing Systems. 1–15. https: 
//doi.org/10.1145/3411764.3445518 

[89] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In 
Proceedings of the IEEE Conference on Computer Vision and pattern Recognition. 
4510–4520. https://doi.org/10.1109/cvpr.2018.00474 

[90] Edgar H Schein. 1990. Organizational culture. Vol. 45. American Psychological 
Association. 

[91] Abhishek Sehgal and Nasser Kehtarnavaz. 2019. Guidelines and benchmarks for 
deployment of deep learning models on smartphones as real-time apps. Machine 
Learning and Knowledge Extraction 1, 1 (2019), 450–465. 

[92] Daniel Smilkov, Shan Carter, D Sculley, Fernanda B Viegas, and Martin Wat-
tenberg. 2016. Direct-manipulation visualization of deep networks. In ICML 
Workshop on Vis for Deep Learning. 

[93] Irene Solaiman, Zeerak Talat, William Agnew, Lama Ahmad, Dylan Baker, 
Su Lin Blodgett, Hal Daumé III, Jesse Dodge, Ellie Evans, Sara Hooker, et al. 
2023. Evaluating the social impact of generative AI systems in systems and 
cociety. arXiv preprint arXiv:2306.05949 (2023). 

[94] Stanford. 2023. The AI index report: Measuring trends in artifcial intelligence. 
https://aiindex.stanford.edu/report/ 

[95] Mingxing Tan and Quoc Le. 2019. Efcientnet: Rethinking model scaling for 
convolutional neural networks. In International Conference on Machine Learning. 
PMLR, 6105–6114. arXiv:1905.11946 

[96] TensorFlow. 2018. Introducing the Model Optimization Toolkit for Tensor-
Flow. https://blog.tensorfow.org/2018/09/introducing-model-optimization-
toolkit.html 

[97] TensorFlow. 2020. Quantization aware training with TensorFlow 
Model Optimization Toolkit - performance with accuracy. https: 
//blog.tensorfow.org/2020/04/quantization-aware-training-with-tensorfow-
model-optimization-toolkit.html 

[98] David R Thomas. 2003. A general inductive approach for qualitative data 
analysis. American Journal of Evaluation 27, 2 (2003), 237–246. 

[99] Nenad Tomašev, Julien Cornebise, Frank Hutter, Shakir Mohamed, Angela 
Picciariello, Bec Connelly, Danielle CM Belgrave, Daphne Ezer, Fanny Cachat 
van der Haert, Frank Mugisha, et al. 2020. AI for social good: Unlocking the 
opportunity for positive impact. Nature Communications 11, 1 (2020), 2468. 

[100] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre 
Sablayrolles, and Hervé Jégou. 2021. Training data-efcient image transformers 
& distillation through attention. In International Conference on Machine Learning. 
PMLR, 10347–10357. 

[101] Marcos Treviso, Ji-Ung Lee, Tianchu Ji, Betty van Aken, Qingqing Cao, Manuel R 
Ciosici, Michael Hassid, Kenneth Heafeld, Sara Hooker, Colin Rafel, et al. 2023. 
Efcient methods for natural language processing: A survey. Transactions of 
the Association for Computational Linguistics 11 (2023), 826–860. 

[102] Pavan Kumar Anasosalu Vasu, James Gabriel, Jef Zhu, Oncel Tuzel, and Anurag 
Ranjan. 2023. FastViT: A fast hybrid vision transformer using structural repa-
rameterization. arXiv preprint arXiv:2303.14189 (2023). 

[103] Pavan Kumar Anasosalu Vasu, James Gabriel, Jef Zhu, Oncel Tuzel, and Anurag 
Ranjan. 2023. An improved one millisecond mobile backbone. (2023). 

[104] Pablo Villalobos, Jaime Sevilla, Tamay Besiroglu, Lennart Heim, Anson Ho, and 
Marius Hobbhahn. 2022. Machine learning model sizes and the parameter gap. 
arXiv:2207.02852 [cs.LG] 

[105] Dakuo Wang, Josh Andres, Justin D Weisz, Erick Oduor, and Casey Dugan. 2021. 
Autods: Towards human-centered automation of data science. In Proceedings of 
the 2021 CHI Conference on Human Factors in Computing Systems. 1–12. 

[106] Dakuo Wang, Q Vera Liao, Yunfeng Zhang, Udayan Khurana, Horst Samulowitz, 
Soya Park, Michael Muller, and Lisa Amini. 2021. How much automation does 
a data scientist want? arXiv (2021). 

[107] Dakuo Wang, Justin D Weisz, Michael Muller, Parikshit Ram, Werner Geyer, 
Casey Dugan, Yla Tausczik, Horst Samulowitz, and Alexander Gray. 2019. 
Human-AI collaboration in data science: Exploring data scientists’ perceptions 
of automated AI. Proceedings of the ACM on Human-Computer Interaction 3, 
CSCW (2019), 1–24. 

[108] Yanfei Wang, Zhiwen Yu, Sicong Liu, Zimu Zhou, and Bin Guo. 2023. Genie in 
the model: Automatic generation of human-in-the-loop deep neural networks 
for mobile applications. Proceedings of the ACM on Interactive, Mobile, Wearable 
and Ubiquitous Technologies 7, 1 (2023), 1–29. 

[109] Zijie J. Wang, Robert Turko, Omar Shaikh, Haekyu Park, Nilaksh Das, Fred 
Hohman, Minsuk Kahng, and Duen Horng (Polo) Chau. 2021. CNN explainer: 
Learning convolutional neural networks with interactive visualization. In IEEE 
Transactions on Visualization and Computer Graphics. IEEE. https://doi.org/10. 
1109/TVCG.2020.3030418 

[110] Pete Warden and Daniel Situnayake. 2019. Tinyml: Machine learning with 
tensorfow lite on arduino and ultra-low-power microcontrollers. O’Reilly Media. 

[111] Megan Maher Welsh, David Koski, Miguel Sarabia, Niv Sivakumar, Ian Arawjo, 
Aparna Joshi, Moussa Doumbouya, Luca Suau, Xavierand Zappella, and Nicholas 
Apostolof. 2023. Data and Network Introspection Kit. https://github.com/apple/ 
dnikit 

[112] Maximiliane Windl, Sebastian S Feger, Lara Zijlstra, Albrecht Schmidt, and 
Pawel W Wozniak. 2022. ’It is not always discovery time’: Four pragmatic 
approaches in designing AI systems. In CHI Conference on Human Factors in 
Computing Systems. 1–12. 

[113] Rüdiger Wirth and Jochen Hipp. 2000. CRISP-DM: Towards a standard process 
model for data mining. In Proceedings of the 4th international conference on the 
practical applications of knowledge discovery and data mining, Vol. 1. Manchester, 
29–39. 

https://github.com/microsoft/nni
https://doi.org/10.21428/2c646de5.031d4553
https://doi.org/10.21428/2c646de5.031d4553
https://doi.org/10.1145/3469029
https://doi.org/10.1145/3469029
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html
https://doi.org/10.1145/1357054.1357160
https://arxiv.org/abs/1802.05668
https://pytorch.org/docs/stable/quantization.html
https://pytorch.org/docs/stable/sparse.html
https://pytorch.org/tutorials/
https://doi.org/10.1145/3411764.3445518
https://doi.org/10.1145/3411764.3445518
https://doi.org/10.1109/cvpr.2018.00474
https://aiindex.stanford.edu/report/
https://arxiv.org/abs/1905.11946
https://blog.tensorflow.org/2018/09/introducing-model-optimization-toolkit.html
https://blog.tensorflow.org/2018/09/introducing-model-optimization-toolkit.html
https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html
https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html
https://blog.tensorflow.org/2020/04/quantization-aware-training-with-tensorflow-model-optimization-toolkit.html
https://arxiv.org/abs/2207.02852
https://doi.org/10.1109/TVCG.2020.3030418
https://doi.org/10.1109/TVCG.2020.3030418
https://github.com/apple/dnikit
https://github.com/apple/dnikit


CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

[114] Austin P. Wright, Zijie J. Wang, Haekyu Park, Grace Guo, Fabian Sperrle, Men-
natallah El-Assady, Alex Endert, Daniel Keim, and Duen Horng Chau. 2020. A 
comparative analysis of industry human-AI interaction guidelines. Workshop 
on Trust and Expertise in Visual Analytics at IEEE VIS (2020). 

[115] Junru Wu, Yue Wang, Zhenyu Wu, Zhangyang Wang, Ashok Veeraraghavan, 
and Yingyan Lin. 2018. Deep k-means: Re-training and parameter sharing with 
harder cluster assignments for compressing deep convolutions. In International 
Conference on Machine Learning. PMLR, 5363–5372. 

[116] Canwen Xu and Julian McAuley. 2023. A survey on model compression and ac-
celeration for pretrained language models. In Proceedings of the AAAI Conference 
on Artifcial Intelligence, Vol. 37. 10566–10575. 

[117] Xuhai Xu, Jun Gong, Carolina Brum, Lilian Liang, Bongsoo Suh, Shivam Kumar 
Gupta, Yash Agarwal, Laurence Lindsey, Runchang Kang, Behrooz Shahsavari, 
et al. 2022. Enabling hand gesture customization on wrist-worn devices. In 
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. 
1–19. 

[118] Qian Yang. 2018. Machine learning as a UX design material: How can we 
imagine beyond automation, recommenders, and reminders?. In AAAI Spring 
Symposium Series. 

[119] Qian Yang, Alex Scuito, John Zimmerman, Jodi Forlizzi, and Aaron Steinfeld. 
2018. Investigating how experienced UX designers efectively work with ma-
chine learning. In Proceedings of the 2018 Designing Interactive Systems Confer-
ence. 585–596. 

[120] Dixi Yao, Liyao Xiang, Zifan Wang, Jiayu Xu, Chao Li, and Xinbing Wang. 
2021. Context-aware compilation of dnn training pipelines across edge and 
cloud. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous 
Technologies 5, 4 (2021), 1–27. 

[121] Nur Yildirim, Alex Kass, Teresa Tung, Connor Upton, Donnacha Costello, Robert 
Giusti, Sinem Lacin, Sara Lovic, James M O’Neill, Rudi O’Reilly Meehan, et al. 
2022. How experienced designers of enterprise applications engage AI as a 
design material. In CHI Conference on Human Factors in Computing Systems. 
1–13. 

[122] Marwa Zamzam, Tallal Elshabrawy, and Mohamed Ashour. 2019. Resource 
management using machine learning in mobile edge computing: A survey. In 
2019 Ninth International Conference on Intelligent Computing and Information 
Systems. IEEE, 112–117. https://doi.org/10.1109/icicis46948.2019.9014733 

[123] Sabah Zdanowska and Alex S Taylor. 2022. A study of UX practitioners roles 
in designing real-world, enterprise ML systems. In CHI Conference on Human 
Factors in Computing Systems. 1–15. 

[124] Amy X Zhang, Michael Muller, and Dakuo Wang. 2020. How do data science 
workers collaborate? Roles, workfows, and tools. Proceedings of the ACM on 
Human-Computer Interaction 4, CSCW1 (2020), 1–23. 

[125] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2018. Shufenet: 
An extremely efcient convolutional neural network for mobile devices. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 
6848–6856. https://doi.org/10.1109/cvpr.2018.00716 

[126] Tianming Zhao, Yucheng Xie, Yan Wang, Jerry Cheng, Xiaonan Guo, Bin Hu, and 
Yingying Chen. 2022. A survey of deep learning on mobile devices: Applications, 
optimizations, challenges, and research opportunities. Proc. IEEE 110, 3 (2022), 
334–354. https://doi.org/10.1109/jproc.2022.3153408 

[127] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, 
Yingqian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A survey 
of large language models. arXiv preprint arXiv:2303.18223 (2023). 

[128] Yong Zhao, Jinyu Li, and Yifan Gong. 2016. Low-rank plus diagonal adaptation 
for deep neural networks. In IEEE International Conference on Acoustics, Speech 
and Signal Processing. IEEE, 5005–5009. 

[129] Peining Zhen, Hai-Bao Chen, Yuan Cheng, Zhigang Ji, Bin Liu, and Hao Yu. 2021. 
Fast video facial expression recognition by a deeply tensor-compressed LSTM 
neural network for mobile devices. ACM Transactions on Internet of Things 2, 4 

Fred Hohman, Mary Beth Kery, Donghao Ren, and Dominik Moritz 

(2021), 1–26. 
[130] Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, 

Cheng Ji, Qiben Yan, Lifang He, et al. 2023. A comprehensive survey on pre-
trained foundation models: A history from BERT to ChatGPT. arXiv preprint 
arXiv:2302.09419 (2023). 

[131] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. 2019. Edge 
intelligence: Paving the last mile of artifcial intelligence with edge computing. 
Proc. IEEE 107, 8 (2019), 1738–1762. https://doi.org/10.1109/jproc.2019.2918951 

[132] Mingjian Zhu, Kai Han, Enhua Wu, Qiulin Zhang, Ying Nie, Zhenzhong Lan, 
and Yunhe Wang. 2021. Dynamic resolution network. Advances in Neural 
Information Processing Systems 34 (2021), 27319–27330. arXiv:2106.02898 

A INTERVIEW QUESTIONS 
The list of questions prepared for each interview participant. 

Background ML Information 

Q1. What is your team? 
Q2. What is your role? 
Q3. How many years of ML experience do you have? 
Q4. How many years of efcient ML experience do you have? 

General Compression Questions 
Q5. Describe the overall use case for model compression in your 

work. What are your main motivations to use model compres-
sion? Why do you care about model compression? 

Q6. Model compression details: 
Q6.1 Which model compression techniques do you use, and 

why? Are there trade ofs or preferences? 
Q6.2 Do you do compression as a fnal step or as a part of the 

training process? 
Q6.3 In your experience, are there any pitfalls people applying 

compression should be aware of? 
Q6.4 How did you fgure out your budgets and how did you 

satisfy them? 
Q7. Do you compare compressed models against baseline models? If 

so, how, and what do you look for, e.g., power and performance, 
other metrics, or user experience changes? 

Compression Tooling Questions 
Q8. What tools or visualizations do you use in your compression 

work? Please be specifc, e.g., specifc charts, views, or metrics. 
How do you use these tools? 

Q9. What do you like about these tools? 
Q10. What features or future tools would help you conduct better 

model compression work? 

https://doi.org/10.1109/icicis46948.2019.9014733
https://doi.org/10.1109/cvpr.2018.00716
https://doi.org/10.1109/jproc.2022.3153408
https://doi.org/10.1109/jproc.2019.2918951
https://arxiv.org/abs/2106.02898

	Abstract
	1 Introduction
	2 Related Work in Human-Centered ML and Model Optimization
	2.1 Ubiquitous Computing: Deploying ML on Mobile & Edge Devices
	2.2 Human-Computer Interaction: Studying AI/ML Practitioners
	2.3 Machine Learning: On-Device ML & Compression Techniques

	3 A Primer on Machine Learning Compression Techniques
	3.1 Quantization
	3.2 Palettization (Weight Clustering)
	3.3 Pruning (Network Sparsity)
	3.4 Distillation
	3.5 Efficient Neural Architectures
	3.6 Dynamic Models

	4 Interview Study Methodology
	4.1 Study Protocol
	4.2 Participants and Recruitment
	4.3 Qualitative Data Analysis
	4.4 Methodological Limitations

	5 Study Results
	5.1 Participants and Emergent Personas
	5.2 The State of Efficient ML in Practice
	5.3 The Metrics of Efficient, On-Device Models
	5.4 Deciding Model Budget
	5.5 Applying Compression during Development
	5.6 Evaluating Compressed Models: Efficiency, Accuracy, and Artifacts

	6 Design Opportunities for Efficient ML Tools and Interfaces
	6.1 Developing Intuition for Compression
	6.2 Comparing Across Compression Schemes
	6.3 Finding Model Bottlenecks for Targeted Compression
	6.4 Evaluating Multi-model ML Systems
	6.5 Simplified Hardware Testing
	6.6 Automating (Some) Compression Experiments

	7 Limitations & Validity
	8 Conclusion
	Acknowledgments
	References
	A Interview Questions



