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Fig. 1. An illustration of exploration enabled in our proposed Dimension Projection Tree/Matrix visualization of high dimensional data.
Each node is consist of one data item plot and one dimension plot. Starting from an initial node (1), users can explore either in data
item space (2, 3) or dimension space (4, 5, 6), by first selecting a subset of data items or dimensions, and then creating child nodes
(3, 4, 5) or converting one single dimension project plot into a matrix representation (6).

Abstract— For high-dimensional data, this work proposes two novel visual exploration methods to gain insights into the data aspect
and the dimension aspect of the data. The first is a Dimension Projection Matrix, as an extension of a scatterplot matrix. In the matrix,
each row or column represents a group of dimensions, and each cell shows a dimension projection (such as MDS) of the data with
the corresponding dimensions. The second is a Dimension Projection Tree, where every node is either a dimension projection plot or
a Dimension Projection Matrix. Nodes are connected with links and each child node in the tree covers a subset of the parent node’s
dimensions or a subset of the parent node’s data items. While the tree nodes visualize the subspaces of dimensions or subsets
of the data items under exploration, the matrix nodes enable cross-comparison between different combinations of subspaces. Both
Dimension Projection Matrix and Dimension Project Tree can be constructed algorithmically through automation, or manually through
user interaction. Our implementation enables interactions such as drilling down to explore different levels of the data, merging or
splitting the subspaces to adjust the matrix, and applying brushing to select data clusters. Our method enables simultaneously
exploring data correlation and dimension correlation for data with high dimensions.

Index Terms—High Dimensional Data, Hierarchical Visualization, Sub-dimensional Space, User Interaction, Subspace, Tree, Matrix.

1 INTRODUCTION

High-dimensional data occurs frequently in science, engineering, and
daily life. For example, DNA microarray technology can produce
vast amounts of measurement data with millions of micrometer-scale
probes. When analyzing text documents, the number of dimensions
can equate to the size of a dictionary if a word-frequency vector is
employed. As data are being accumulated at unprecedented speed,
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handling such data efficiently to provide insights to the users is crit-
ical for effective data analysis. Visualizing and understanding multi-
dimensional data that is large in both size and dimensionality, is a
major challenge in the research community.

Currently, one major category of techniques for high-dimensional
data visualization uses dimension reduction. By converting the data
to lower dimensions, which are easier to visualize, dimension reduc-
tion aids comprehensive and focused analysis. One problem with the
current dimension reduction technology is that users have little con-
trol over the process. In addition, after the dimension reduction, the
original dimensionality information is lost. The intrinsic information
on the relationship between the dimensions is no longer accessible to
the end user. User interaction is not usually provided in such cases.
Another group of visualization techniques, including parallel coordi-
nates [15, 34], scatterplot matrix [7], and table lens [29], avoids dimen-
sion reduction and visualizes the high-dimensional data at the expense
of spatial resolution. Such techniques mostly deal with data with no
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Fig. 2. Illustration of clustering in subspaces. Separation of clusters in
appropriate selection of dimension subspaces can be much easier than
that in the original high dimensional space.

more than twenty dimensions.

Most of the current work on high-dimensional data visualization
has focused on large datasets and reducing data clutter during visual-
ization. Relatively few visualization systems can handle datasets with
hundreds of dimensions, although these datasets are becoming increas-
ingly common in many application areas, such as bio-informatics. A
scalable visualization tool that allows the user to interactively visualize
data with high dimensionality is critical for understanding the data.

Furthermore, the above mentioned techniques do not capitalize on
the differences between dimensions. Indeed, not all dimensions are
relevant for analysis in high-dimensional data. Irrelevant dimensions
can make the discovery of interesting features, such as clusters, much
more difficult by hiding them in noisy data. Even worse, in data with
very high dimensions, data objects are nearly equidistant. In data min-
ing, instead of examining the dataset as a whole, more recent research
has employed subspace clustering algorithms to localize, search and
uncover clusters that exist in multiple, possibly overlapping subspaces
as illustrated in Figure 2. In large datasets, on the other hand, inter-
esting subspaces may only be discovered when appropriate set of data
items are selected, as other data items may act as noise.

We suggest to support subspace exploration in a divide and con-
quer manner. The datasets can be divided or reduced into subsets of
dimensions and/or data items, and those subsets can be organized in a
hierarchical manner (tree). In this work, we develop a set of visual ex-
ploration methods and tools called Dimension Projection Matrix/Tree
(see Figure 1), to visualize high-dimensional data and help users gain
insights from both the data aspect and dimension aspect. In our work,
a Dimension Projection Matrix (Figure 1 (6)) can be considered as an
extension of a scatterplot matrix, where each row or column of the
matrix represents a group of dimensions, and each cell illustrates a di-
mension projection (such as MDS) of the data with the corresponding
dimensions. In the Dimension Projection Tree, every node is either a
dimension projection plot or a Dimension Projection Matrix. Nodes
are connected with curved links and each child node in the tree cov-
ers a subset of the parent node’s dimensions or a subset of the parent
node’s data items. While the nodes of the Dimension Projection Tree
visualize the subspaces of dimensions (Figure 1 (5, 6)) or subsets of
the data (Figure 1 (3)) under exploration, the matrix nodes further pro-
vide cross-comparison between different combinations of subspaces.
Both Dimension Projection Matrix and Dimension Project Tree can be
constructed algorithmically through automation, or manually invoked
through user interaction.

The user interface for Dimension Projection Matrix/Tree is de-
signed to enable interactive operation and exploration in the dimen-
sion and data item hierarchy, such as drilling down to explore different
levels of the data, merging or splitting the subspaces to adjust the ma-
trix, and applying brushing to select data clusters (Figure 1 (2, 4)).

Our methods enable simultaneously exploring data correlation and di-
mension correlation for data with high dimensions. The interaction
provided by our proposed methods allows users to effectively and effi-
ciently explore large datasets containing hundreds of dimensions. Fur-
thermore, our visualization methods enable simultaneous exploration
on the data correlation and dimension correlation for data with high
dimensionality.

To summarize, the proposed Dimension Projection Matrix/Tree has
the following features:

• Improved scalability in terms of number of dimensions. The hi-
erarchy enables users to explore high-dimensional data sets at
different levels from the aspect of both data items and dimen-
sions.

• Convenient means of exploration and manipulation of dimen-
sion subspaces. Users can operate on each plot of the Dimen-
sion Projection Matrix/Tree to explore corresponding dimension
subspaces.

• Simultaneous exploration and manipulation of both data items
and dimensions. By providing a visualization of both the data
projection and the sub-dimensional space projection, users can
interact directly with both data items and dimensions.

The reminder of the paper is organized as the follows. We start
by summarizing related works. Then we present the design of the
Dimension Projection Matrix/Tree, show details of the interactions,
offer guidelines and then show some notable implementation details.
After presenting our case studies and discussions, we conclude the
paper.

2 RELATED WORK

In this section, we first show the limitations of general multidimen-
sional data visualizations, when applied to data with large scale and
high dimensionality. We then discuss the hierarchical (divide and con-
quer) visualization strategy. Finally we discuss a few existing tech-
niques on subspace clustering analysis comparable to our work.

2.1 Multi-dimensional Data Visualization

A few visualization techniques can simultaneously represent all vari-
ables of a multi-dimensional dataset.

The scatterplot matrix [7] visualizes the data projection in 2D sub-
spaces spanned by all combinations with two dimensions. The par-
allel coordinates [15, 16] show data simultaneously on multiple di-
mensions via polyline metaphor. These two methods work well for
correlation detection and data filtering, but suffer from the cluttering
problem when handling large data or high dimensionality as one high
dimensional data point has to be presented as many points or a poly-
line. Although researchers have tried to cope with the cluttering prob-
lem by navigation [10] and feature extraction [30, 36, 9], generally
such methods do not scale well. Tablelens [29, 25] and Pixel-based vi-
sualization [20] are also useful techniques for multi-dimensional data
visualization. They are scalable, however usually not good at showing
data correlation and dimension correlation. One exception is the Value
and Relation (VaR) display [39], which can visualize dimension cor-
relation. However it is not able to show data correlation at the same
time.

Due to the complexity caused by the number of dimensions, high-
dimensional datasets are usually visualized after dimension reduction.
Statistical methods to reduce the dimensionality can be categorized as
linear projection methods (such as PCA [18]), and non-linear meth-
ods (such as MDS [38], SOM [21]). Multi-dimensional Scaling [38]
(MDS) projects high dimensional data points into a low dimensional
space. An MDS algorithm starts with a matrix of item-to-item simi-
larities and the output dimensionality (usually lower than the input).
The location of each item in the output is assigned according to the
similarities. In many visualization applications, a dimension projec-
tion method, such as MDS, projects data items into a two-dimensional
plane, which can be displayed as a scatterplot.



In general, the dimension projection approaches are computation-
ally expensive, despite of the techniques [5, 37, 14, 43] that reduce
the computational load. These projection methods are usually scalable
to data scale and dimensionality. The major limitation of them is that
the individual dimensional information is lost, therefore the results are
hard to explain. We use PCA and MDS projection in our implemen-
tation due to their good scalability. By allowing user exploration, the
results are easier to explain.

Most dimensionality reduction methods focus predominantly on
preserving one or a few significant structures in data. Often, the ques-
tion of which structure to preserve is uncertain and task-dependent.
To deal with this problem, grand tour [4, 35, 8] examines structure
of high-dimensional data from all possible angles. Projection pur-
suit [8, 12] only shows the important aspects of high-dimensional
space. Johansson et al.’s system [17] selects dimensions by quality
metrics. Although many techniques above allow human intervention
to select dimensions, the interventions are rather restricted. Our tech-
nique allows free dimension selection.

2.2 Hierarchical Visualization of Multi-dimensional Data

To handle large multi-dimensional datasets, the major challenge is to
solve the clutter problem in terms of both dimensionality and amount
of data items. A visualization that employs a hierarchical data struc-
ture together with a level of detail approach is promising. Such a
hierarchy can be built in the data item space. Hierarchical paral-
lel coordinates [13] have been proposed as a multi-resolution view
of large multi-dimensional data and are based on hierarchical clus-
tering. Long and Linsen [23] developed MultiClusterTree to interac-
tively explore hierarchical clusters in multi-dimensional multi-variate
data. Sifer [31] designed a variety of user interfaces based on paral-
lel coordinate trees to support the exploration of hierarchical multi-
dimensional data. Slingsby et al. [32] created the data item hierarchy
by gradually partitioning the dataset dimension by dimension. They
then explored the effects of a modified treemap layout to show the
hierarchy. Piringer et al.’s hierarchical difference scatterplot [28] ex-
plores the possible sub-dimension spaces, and explicitly visualizes
differences between them. More recently, Elmqvist and Fekete [11]
systematically studied the hierarchical aggregation for visualization
which can be applied to visualize multi-dimensional data.

There are also hierarchies in dimension space. Yang et al. [41] pro-
posed a radial, space-filling hierarchy visualization tool called Inter-
Ring for visually navigating and manipulating hierarchical structures.
The work is then integrated in Visual Hierarchical Dimension Reduc-
tion (VHDR) [42] to explore high-dimensional datasets. Dimensions
are first grouped into a hierarchy, and lower dimensional spaces are
then constructed based on the clustering in the hierarchy, either manu-
ally or automatically, with the assistance of InterRing.

Our technique includes both data item hierarchy and dimension hi-
erarchy. It therefore supports scalable exploration in both data space
and dimension space.

2.3 Sub-dimensional Space Analysis

High-dimensional data faces the “Curse of Dimensionality”, which
means that the data items tend to be equidistant. This adds significant
difficulty to pattern detection. Furthermore, for most high-dimensional
data, each pattern is prominent only in a few dimensions, while the
other dimensions hide more features than they reveal. Recent research
has introduced analysis in sub-dimension spaces.

Subspace clustering aims to detect clusters in subspaces. For each
cluster, the data items as well as the relevant dimensions are calculated
at the end of the algorithms. Müller et al. [26] have classified subspace
clustering algorithms as cell-based approaches (e.g. CLIQUE [3]),
density-based approaches (e.g. SUBCLU [19]) and clustering oriented
approaches (e.g. PROCLUS [2]). They have evaluated a number of al-
gorithms and provided an open-source interactive framework for the
analysis. Parsons et al. [27] conducted a review of common algo-
rithms. Lex et al.’s method [22] can be used to compare clustering
results across subspaces. Tatu et al. [33] proposed an interactive visu-
alization designed for users to navigate through the subspaces, using

the SURFING [6] algorithm for subspace search.
Other measures have aimed to find the most important dimensions,

and are used to study the dataset in the right subspace. For example,
Yang et al. [40] proposed DOSFA, in which they filtered out unimpor-
tant dimensions or dimensions similar to others. The above-mentioned
work from Johansson and Johansson [17] also falls into this category.

All works above allow rather limited user intervention in the sub-
space analysis. In contrast, our technique supports free exploration of
the subspaces. In this way, human knowledge can be better integrated
into the exploration process.

3 DESIGN OF DIMENSION PROJECTION MATRIX/TREE

Our proposed methods aim to discover clusters and interesting sub-
spaces from high-dimensional data. High-dimensional data can be
very complex; some interesting clusters can only be identified by se-
lecting the correct subspace and some interesting subspaces can only
be found by choosing the right subset of data items.

Our methods help users analyze high-dimensional data by creat-
ing, visualizing and exploring a hierarchy of subsets. In particular,
we support simultaneous exploration of subspaces and subsets of data
items with a hierarchy of Dimension Projection nodes. Each Dimen-
sion Projection node corresponds to a selection of the dataset, which is
determined by a set of dimensions (subspace) and a set of data items.
The nodes are organized in a hierarchical structure, whereby the di-
mensions and data items in the child nodes are subsets of the ones in
their parents. The root node of the tree represents the whole dataset,
with all dimensions and data items selected. During the process of in-
vestigation, a divide and conquer strategy is employed. Users always
select a subset of either dimensions or data items, e.g. effectively re-
duce the either the number of dimensions or the size of the data. Users
can create, modify and delete child nodes with a rich set of interac-
tions. The interactions are illustrated in Figure 4, and will be detailed
in this section.
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Fig. 3. Illustration of a Dimension Projection Matrix node. Each node
represents a portion of the high-dimensional dataset defined by a set
of dimensions and a set of data items. The data item plot is shown as
an Dimension Projection Matrix of dimension groups. The upper right
cells of the matrix show Dimension Projection of data items on the cor-
responding dimensions, while the lower left cells of the matrix show Di-
mension Projection of the corresponding dimensions. The dimensions
for each cell are indicated by the dimension indicators. The dimension
plot is an Dimension Projection of all dimensions in the node.

3.1 Dimension Projection Matrix Nodes

Each of our Dimension Projection Matrix node has three major com-
ponents: one dimension plot, one data item plot and one toolbar.

3.1.1 Dimension Plot

The dimension plot, which is located on the right part of the Dimen-
sion Projection Matrix node (Figure 3), shows the correlations be-
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Fig. 4. Illustration of the interactions of a Dimension Projection Matrix
node. Users can select data items and dimensions, and drag them out
as new nodes, or create a Dimension Projection Matrix by splitting the
dimensions. Linked brushing is also supported among all the nodes.

tween dimensions. Each point in the dimension plot represents one
dimension, whose position is given by a method of dimension projec-
tion.

In the plot, point colors can show the dimension-wise similarity.
The color is decided by the following algorithm. After the mapping
of points representing the dimension onto a 3D space with dimen-
sion projection, we assign a color for each dimension point by lin-
early transforming its three dimensional projected coordinates to the
lab color space.

After this step, however, dimensions close to each other have very
similar colors, which makes it very difficult to distinguish between
different dimensions when a subset of similar dimensions are grouped
together. To solve this problem, we reassigned the colors with the fol-
lowing method1. First a set of colors in the lab color space are sampled
uniformly, before a K-means algorithm is performed with the original
dimension colors as initial centers. Finally, the dimensions are as-
signed with colors from the new centers when the K-means algorithm
converges. The result of this process is a set of distinguishable colors
that corresponds to the proximity of dimensions.

3.1.2 Data Item Plot

The data item plot, located on the left part of each Dimension Projec-
tion Matrix node (Figure 3), is a matrix of Dimension Projection plots.
The design can be viewed as an adapted version of the scatterplot ma-
trix [7], except that the rows and columns represent multiple dimen-
sions and the scatterplots are based on Dimension Projection. The
dimensions in this node can be split into k mutually excluding groups,
G1 to Gk. Each dimension in this node is represented by one small
color strip on dimension indicator, at the right and bottom boundaries.
Position of a dimension on the dimension indicator shows its group
belonging. Each cell of the matrix corresponds to a set of dimen-
sions. Specifically, cell at i-th column and j-th row corresponds to
the dimensions given by Gi ∪G j. Upper right cells display Dimen-
sion Projection of data items on the corresponding dimensions, while
lower left cells display the Dimension Projection of the corresponding
dimensions. Initially when a node is created, its data item plot is a
1× 1 matrix. The user may later split the dimensions into k groups,
resulting in k× k subplots. Each node in the upper right cell is a data
item. The color of it is given by users’ brushing.

3.1.3 Toolbar

The toolbar, which is located on the top of each node, contains several
buttons, including “close”, “move”, “toggle dimension plot”, “clus-
ter data items”, and “cluster dimensions”. The latter two buttons are
used to invoke automatic clustering algorithms to split the data items
or dimensions and then create child nodes for each cluster. Next to

1 The idea of K-means clustering in the lab colorspace is inspired

from Mathieu Jacomy’s “I want hue” project: http://tools.medialab.sciences-

po.fr/iwanthue/theory.php

the toolbar, N indicates the data item number in the data set, while
D indicates the number of dimensions. In Figure 3, the dataset under
exploration has 644 data items and 221 dimensions.

The following sections provide details about the interactions on
nodes.

3.2 Dimension Space Exploration

A suite of interactions is provided for dimension space exploration,
including splitting/merging, zooming in/out and dragging. Together,
these interactions allow users to efficiently explore the subspaces and
find the ones with the most salient clusters.

3.2.1 Splitting and Merging

Users are initially presented with only one node that covers all the
dimensions in the dataset. This can be seen as a 1×1 Dimension Pro-
jection Matrix. However, interesting structures are usually hidden in
the subspaces of the dataset. Users can split the dimensions manually
or use some clustering algorithms. For manual splitting, users can se-
lect interested dimensions by either selecting them in the dimension
indicators, or selecting them from the dimension plot with a lasso.
After selecting the dimensions, users can drag them into the node to
create a new dimension group, or into existing groups to merge them
together. Users can also click the button on the toolbar, and run the
clustering algorithms, which automatically splits the dimensions and
the split new nodes are laid out automatically. By this way, a tree
can be automatically constructed based with the predefined clustering
methods.

Figure 5 is an example of splitting and merging dimensions.

(A, B, C, D, E) (A, B)   (D, E)      (C) (A, B)        (C, D, E)

N: 400, D: 5 N: 400, D: 5N: 400, D: 5

Fig. 5. Subspace exploration via splitting and merging dimension
groups. Dimensions A to E in the left node are split into 3 groups (cen-
ter), and then two groups are merged (right).

3.2.2 Zooming

Users seldom handle all the k2 Dimension Projection plots simultane-
ously. Our methods allow users to zoom the cells in the matrix in order
to change the span of the dimension groups. The size of the whole ma-
trix is maintained so that the widening of one group would make the
other groups smaller. This policy aims to make the most interesting di-
mension group the largest one, while keeping other interesting groups
visible. Figure 6 illustrates the effects of zooming.

Zoom Zoom

N: 400, D: 5 N: 400, D: 5 N: 400, D: 5

Fig. 6. Focus+Context zoom on plot size. Left: default plot sizes; Cen-
ter: the second dimension group is zoomed in; Right: the first group is
zoomed in.



3.2.3 Dragging Out

Although zooming can provide a greater amount of detail about one
subspace, other surrounding plots may still distract the users if they
are not necessary. Therefore we allow the users to drag the dimen-
sions to create a child node (Figure 7). The child node is linked to
its parent with several lines that correspond to the dimensions. With
a hierarchical structure, the exploration history is recorded and visual-
ized and users can easily trace the dimensions in a leaf node along its
ancestors and see the effects of subspace selections; this helps users
make sense of the whole analysis process.

3.2.4 Guidelines

Here we present some general guidelines for subspace exploration us-
ing our tool. The dimension plot is the main tool with which to gains
insights into the subspaces, the most natural way to utilize it is to group
the dimensions into several clusters, each of which represents a sub-
space in which the dimensions are correlated. It is a good idea to first
split these clusters into a Dimension Projection matrix in order to gets
insights into each cluster. Another potentially useful way is to select
a few dimensions from each cluster to form a subspace, which helps
reduce the number of dimensions.

N: 644, D: 222

N: 644, D: 48

N: 644, D: 22

N: 644, D: 72N: 644, D: 37

(a) (b)

(c) (d) (e)

Fig. 7. Subspaces can be dragged out for further exploration. In this ex-
ample, subspaces from (a) are dragged out as (b), (c), (d), (e), while the
dimensions in each child node are indicated by links to the dimension
plot of the parent node.

3.3 Data Item Space Exploration

For data item space exploration, users try to understand the data distri-
bution, especially the potential clustering in each subspace. They can
create child nodes for interesting subsets of data items, or label the
data items via brushing.

To create child nodes, users select a set of data items within one
node by using mouse to specify the desirable region. The selected re-
gion is then computed with a highlighted bounding curve filled with
grey background color. Users can then directly drag the selected data
items out to create a new child node through mouse movement (see
Figure 8). The child node will contain these data items and all the
dimensions of its parent node. Selecting a subset of data items will
change the correlation of the dimensions, which means that some in-
teresting dimension correlations can be found in the dimension plot of
the child node. The user could then drag some dimensions out, and
see the altered data item distribution.

Like traditional high-dimensional analysis tools, our approach sup-
port linked brushing. Users can choose a brush color and then select
some points with a lasso tool; the points in other plots will also be
highlighted, while points that are not selected will be faded during

brushing. In addition, some datasets may come with data item labels,
and the methods also support brushing points according to their labels.

N: 644, D: 221 N: 279, D: 221 N: 177, D: 221

Fig. 8. Child nodes with subset of data items. A region surrounding the
selected data items is drawn behind the plots, indicating the data item
selection of each child node.

3.4 Node Layout

An automatic method is designed for node layout. As the nodes are or-
ganized in a hierarchical manner, traditional tree layout algorithms can
be applied. However, our deisgn contains two different kinds of child
nodes: one that selects data items, the other that selects dimensions.
The algorithm works in a recursive manner. First we put the root node
on the top left corner, then place its child nodes of data items below
it and the child nodes of dimensions on its right-hand side. Manual
layout is also supported and users can move the nodes if needed.

4 IMPLEMENTATION DETAILS

Our interactive Dimension Projection Tree/Matrix can be implemented
in many different ways. Our current implementation has a dataset
server program and a visualization client program. The server part
is written in Python and is responsible for loading the datasets, keep-
ing track of data item and dimension selection, computing the Dimen-
sion Projection plots, and performing automatic clustering algorithms.
The client program, which is written in C++ and Cocoa Frameworks,
presents the visualization and handles user interactions. Communica-
tion between the server and the client is achieved through a custom
protocol over TCP. Separating the computationally intensive tasks can
minimize the CPU and memory usage of the client-side computer. It is
also possible to implement the server on a cluster, making it possible
to deal with large datasets.

Our method uses classical Multidimensional Scaling (CMDS) to
calculate the dimension projection. For dimensions, we set the dis-
tance function as one minus Pearson correlation coefficient. For data
items, we set the distance function as Euclidean distance. As CMDS is
equivalent to PCA when Euclidean distances are used (in terms of di-
mensionality reduction, PCA can be seen as a particular case of MDS)
and, in our cases, the number of dimensions are generally less than the
number of points. Therefore, in terms of implementation, PCA is used
instead of CMDS. Our method does not limit the dimension projec-
tion algorithms; any algorithm that can reduce high-dimensional data
to two-dimensional data, such as several kinds of MDS, Kernel PCA,
and Isomap, can be used. In practice, the analyst can choose appropri-
ate algorithms for the datasets under analysis.

We used spectrum clustering with kNN graph to perform automatic
clustering of data items and dimensions. The distance function is iden-
tical to that used in the CMDS. Details about the spectrum clustering
algorithm can be found in Luxburg’s tutorial [24].

5 CASE STUDY

In this section, we demonstrate the effectiveness of the proposed meth-
ods with two real-world datasets. The case studies are done by the
paper authors.

5.1 USDA Food Data

First we present a case-study on the USDA food composition dataset.
This dataset is used in [33] for their case study, here we demonstrate
our prototype system with this dataset, and compare our results with



theirs. The dataset is a collection of foods, each dimension represents
a certain type of nutrient. After preprocessing, it contains 722 data
items and 18 dimensions.

We loaded the preprocessed data into our system. In the main data
item plot, we immediately see three clusters, and several groups in the
dimension plot (see Figure 9 (a)). We brushed the three clusters with
different colors to track them during exploration. In Figure 9 (b), fol-
lowing the guidelines we discussed, we selected two clusters of dimen-
sions and created child nodes for them. We found that the clustering
feature changed. For example, the red cluster becomes concentrated
under the left node. The blue and green clusters merged into one in
the right node. In (c) we demonstrate the matrix representation. The
dimensions are divided into four mutually exclusive groups according
to the clustering feature of the dimension plot in (a). While observing
the same information as in (b), we can also see the Dimension Pro-
jection plots of the combined subspaces. In (d) we selected the lower
cluster and dragged it out as a new node, we found out that the di-
mensions Energy, Lipid and Water, became closer to each other in the
dimension plot. Thus we grouped them together and separated them
with the the remaining dimensions. In the resulting matrix, we found
two different ways to cluster the selected set of data items. However,
as shown in (e), in the original dataset, if we select the dimensions
Energy, Lipid and Water, it is hardly possible to tell the three clusters
directly, because other data items changed the clustering feature.

5.2 CADASTER Challenge Data

We also conducted a case study on a real world dataset from the
CADASTER challenge [1]. The dataset contains the structural in-
formation of molecules. Each item in the dataset is a molecule, and
each dimension is a SimulationsPlus descriptor, such as the number of
atoms, the formal electric charge, or the largest principal moment of
inertia. The challenge itself aims to predict the environmental toxicity

(log(IGC50−1)) of molecules from these features. In our case study,
we wanted to see how environmental toxicity is related to the dimen-
sions and find a model of the dataset through visual analytics. How-
ever, the environmental toxicity is a continuous value, which means
that the original problem of the challenge is a regression problem.

To make it simpler, we reduced the regression problem to a classi-
fication problem by trying only to identify whether the environmental
toxicity is a positive number. There are 644 data items in the dataset.
Excluding the environmental toxicity, there are 221 numeric dimen-
sions. Figure 10 (a) shows the original Dimension Projection plot of
both data items and dimensions.

Because we already know the two classes (positive/non-positive en-
vironmental toxicity), we started by coloring the data items with two
distinctive colors (see Figure 10 (a)). From the original Dimension
Projection plot, the two classes are mixed together, which makes it
very difficult to discriminate them directly.

The dimensional space can be clustered into three general clusters;
we selected the dimensions in the left part and created a new node
for them (see Figure 10 (c)). It then became very clear from the data
item plot, that the dataset can be grouped into three clusters, in this
subspace. Having identified that most of the blue points are in the
first cluster, we dragged this cluster out (see Figure 10 (d)). We then
examined the node in (d), split the dimensions into two groups using
the clustering feature in the dimension plot. As shown in the Dimen-
sion Projection matrix, the bottom-right group appeared to be good
for classification, so we dragged its dimensions out to create node (e).
We repeated the process in node (e) and found a smaller subspace to
discriminate the two classes. This subspace can be used to construct a
classifier for the two classes. However, it is not sufficient to only take
the dimensions; because we selected a subset of data items before we
found the subspace, we must be able to make sure that a new point
is in the subset before classifying it with the subspace. Accordingly,
we went back to node (c) and tried to identify a smaller subspace that
preserved the three clusters. The dimension plot gave us a strong hint
to separate the dimensions; we created a child node (i) from the few
remaining dimensions and found that it preserved the three clusters.
After this step, we were able to perform the classification by first us-

ing the subspace in (i) to determine whether the point is in the first
cluster, then using the subspace in (f) to separate the two classes.

The classifier we identified in this example is not very accurate, be-
cause we only did a rough exploration of the subspaces; for example,
the second cluster in (c) also contains two classes and we have not
explored yet in this case. However, the classifier we created through
visual analytics can be a good starting point for automatic optimization
algorithms.

6 DISCUSSION

This section summarizes our design and presents several limitations
and possible extensions.

Our proposed visual analytic exploration tool called Dimension
Projection Matrix/Tree helps users explore subspaces and subsets of
high-dimensional data in a hierarchical way. The tool facilitates the
investigation process by providing data item plots and dimension plots
for investigating the subspaces and subsets, and interactive ways to
construct the hierarchy, both manually and automatically. While the
leaf nodes show the structure of a subset of the data, the whole tree
depicts the global structure of the investigation process, which reflects
the dataset.

There are very few existing works which support subspace explo-
ration for high dimensional data. We compare our approach with the
semi-automatical approach proposed by Tatu et. al [33] in 2012. In
their approach, SURFING method [6] is used to find out possible sub-
spaces for a given dataset. For example, in the USDA food data, 216
subspaces are found. In their approach, all subspaces are arranged ac-
cording to clustering or ranking order. Therefore it is very difficult for
the user to understand the relationship between different subspaces.
In our approach the subspaces are organized as a tree.That is why the
relationship between the subspaces can be clearly depicted by the tree
structure, which is extremely helpful for the user to navigate and ex-
plore. The contexts of parent and child nodes can help the users to
create a mental image to position the targeting subspaces or subsets in
the overall high-dimensional data space.

Furthermore, our approach can provide the data subset exploration
simultaneously, which is not supported by other methods. Of course,
our methods can be further enhanced by the existing semi-automatical
approach. Such an algorithm could be used to provide traces and hints
for the users to select the next level of subspaces to explore.

Moreover, our design closely integrates the user into the exploration
loop. When domain experts are the users, they could directly harness
their expertise and domain knowledge to guide their exploration. We
plan to conduct a user study with domain experts in the future to verify
such a statement and seek a possibly better design of the knowledge
integration.

There are several limitations in our current prototype implementa-
tion. Below we discuss them and provide possible ways to improve.

Correlation Representation. We used the most basic Pearson cor-
relation coefficient to create the dimension plots. However, numerous
interesting correlations are nonlinear, which means they cannot be ef-
fectively measured by the Pearson correlation coefficient. In addition,
we did not cover correlations between multiple dimensions. From our
case studies, we found that the main way to identify the interesting
subspaces is to group correlated dimensions together, inspect the ef-
fect of grouping with the Dimension Projection Matrix, and then create
child nodes for interesting groups. However, the fact that the dimen-
sions are correlated to each other does not imply that the subspace
is useful for a certain task, such as classification or clustering. To
deal with such tasks, the dimension plot can be enhanced by provid-
ing more task-related information about each dimension; for example,
the sizes of the points can be useful for representing the dimensions’
relevance for classification, which can be measured by mutual infor-
mation or other metrics. In this way, several variants of our design can
be created to support different tasks.

Dimension Projection Algorithms and Performance. As our case
studies have shown, we have applied our method on one dataset with
644 items and 221 dimensions. Currently, the data item plots are com-
puted by PCA and the dimension plots are computed by MDS. There
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(a) Main MDS plot, three obvious clusters.
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(c) Splitting the dimensions into a matrix.

Water,

Vit. E,

Sodium,

Lipid,

Energy

Calcium,

Carbohydrt,

Fiber,

Iron,

Magnesium,

Manganese

Protein,

Vit. B6

Vit. B12

Vit. D

Vit. C

Vit. A

Beta Carot

N: 722, D: 18

N: 284, D: 18

N: 722, D: 18

N: 284, D: 18

Energy,

Lipid,

Water

Three clusters with respect to Energy, Lipid and Water.

Three clusters with respect to the rest of the dimensions.

W
a

te
r,

V
it
. 
E

,

S
o

d
iu

m
,

L
ip

id
,

E
n

e
rg

y

C
a

lc
iu

m
,

C
a

rb
o

h
y
d

rt
,

F
ib

e
r,

Ir
o

n
,

M
a

g
n

e
s
iu

m
,

M
a

n
g

a
n

e
s
e

P
ro

te
in

,

V
it
. 
B

6

V
it
. 
B

1
2

V
it
. 
D

V
it
. 
C

V
it
. 
A

B
e

ta
 C

a
ro

t

(e) In addition, in the original dataset, when we select 

these dimensions (for example, Energy, Lipid, Water), 

it’s not easy to tell the three clusters clearly.

(d) Selected a subset, found two different subspaces under which 

the subset can be clustered differently.

(b) Selected two different subspaces, the distribution 

of the three clusters changed.
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Fig. 9. Experiments on the USDA food composition dataset. See section 5.1 for details about the exploration process.
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(a) Plot of original dataset (b) All attributes (c) Selected a subspace

(d) Selected a subset of data items

(e) Selected a subspace from (d) (f) Separate two classes

(g) Class 1 (h) Class 2

(i) Small subspace 

preserving the three 

clusters.

Fig. 10. Experiments on the CADASTER dataset. (a) shows the plot of the original dataset and the two classes. The tree is constructed in an order
of (a), (c), (d), (e), (f), (g), (h) and (i). See section 5.2 for details about the exploration process.

is no limit on which algorithm to use, so the main difficulty is to find
suitable methods with which to compute the plots of data items and
dimensions. There are many existing algorithms for doing this (see
the related work section), each of which has different advantages and
disadvantages. Therefore, analysts should find the best algorithm that
can output meaningful plots of the dataset being analyzed, as well as
keeping the response time acceptable. The performance and scalabil-
ity is closely related to the dimension projection algorithm we choose.
However, when there are numerous data items or dimensions, the ren-
dering itself can take a long time; this issue can be solved by comput-
ing a density map with the appropriate resolution to replace the current
scatterplot representation.

7 CONCLUSION

This paper has presented approaches called Dimension Projection Ma-
trix/Tree for visualizing high-dimensional datasets. Our approach con-
structed a tree of Dimension Projection nodes in which each node cor-
responds to a selection of the dataset. The selections are represented
as a Dimension Projection Matrix with MDS projections of the data
items on split dimensions. We have designed a flexible user interface

for user interaction and exploration. Our tool allows users to explore
complex datasets with both data item aspect and dimension aspect.

Our methods share the same aspect of grouping dimensions into
a hierarchy as Yang et al.’s work on Visual Hierarchical Dimension
Reduction (VHDR) [42] for exploration of high-dimensional datasets.
However, our design emphasizes investigating the data from the per-
spective of both data items and dimensions. Our approach is comple-
mentary to other high-dimensional data visualization methods.

In the future, we plan to integrate other techniques in high-
dimensional data visualization into our methods and may include ad-
vanced data analysis methods in statistics. Further investigation on the
effectiveness of our approach also requires a formal user study.
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