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Fig. 1. Example visualization designs created in iVisDesigner.

Abstract— We present the design, implementation and evaluation of iVisDesigner, a web-based system that enables users to design
information visualizations for complex datasets interactively, without the need for textual programming. Our system achieves high
interactive expressiveness through conceptual modularity, covering a broad information visualization design space. iVisDesigner
supports the interactive design of interactive visualizations, such as provisioning for responsive graph layouts and different types of
brushing and linking interactions. We present the system design and implementation, exemplify it through a variety of illustrative
visualization designs and discuss its limitations. A performance analysis and an informal user study are presented to evaluate the
system.

Index Terms—Visualization design, Interactive Design, Interaction, Expressiveness, Web-based visualization.

1 INTRODUCTION

Programming frameworks for information visualization such as Pro-
cessing [2], Prefuse [21], ProtoVis [20] or D3.js [7] provide very use-
ful abstractions for visualization designs that make programming eas-
ier and more elegant. Frameworks can utilize existing programming
languages, such as Javascript in the case of D3.js, or new programming
languages, as in the case of Processing. However, they all require tex-
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tual programming, which limits use to a population of coders, or other-
wise imposes a fairly steep learning curve. Most of these frameworks
require iterating back and forth between programming and execution
stage, and thus adjustment of parameters can be cumbersome.

On the other hand, some information visualization toolkits support
interactive ways of creating visual designs [17], from early pipeline-
based systems [32] to more unified approaches [10, 18, 28]. These
systems are easy to use, and generally offer a What You See Is What
You Get editing experience, which greatly assists parameter tuning.
However, compared to textual programming, they are generally less
expressive. For example, the Flexible Linked Axes toolkit [10], which
inspired parts of our visualization functionality, only covers axis-based
designs for multidimensional data visualization, arguably a small por-
tion of the whole design space. There is a need for highly flexible
toolkits that support a wide spectrum of visualization designs.

In this paper, we present iVisDesigner, a web-based system that
enables users to design information visualizations for heterogeneous
datasets interactively, without the need for textual programming.
Compared with other approaches such as Flexible Linked Axes [10]
and Gold [25], and commercial software such as Microsoft Excel and
Tableau, iVisDesigner focuses on expressiveness and modular visual-



ization design flexibility, covering a wider range of the information
visualization design space.

Expressiveness in iVisDesigner is supported by its underlying
framework and user interaction provisions. The framework utilizes a
flexible internal representation of visualization designs, which is care-
fully exposed in a unified user interface. Users specify designs via
a mouse or pen-based user interface in a web browser, utilizing drag
and drop, sketching, and context menu elements. The system supports
visual analytics tasks, such as brushing and linking, and visualization
customizations, both during visualization design and interactive ex-
ploration of data in completed designs. Users can embed the designed
visualizations into existing websites or web-based applications by in-
serting a piece of Javascript provided by iVisDesigner.

The main contribution of this work is an expressive framework to
represent visualization designs for different types of data, allowing
users to interactively arrange visual elements in different ways, com-
bining and linking different types of visualizations. We discuss our
design decisions, implementation choices, as well as system limita-
tions, and demonstrate the expressiveness of our system by presenting
a variety of example applications on different types of datasets. We
provide evaluation of our system in form of a performance analysis
and an informal user study. Our prototype system exhibits high ex-
pressiveness compared with existing systems, while maintaining good
performance and usability.

The paper is organized as follows: After discussing related work,
we present the design of the framework and user interaction, followed
by notable implementation details. Next we discuss example appli-
cations to exemplify coverage of the information visualization design
space. We then present system evaluation in the form of performance
measurements and an informal user study. Finally, we discuss over-
all results and limitations and conclude the paper with an outlook on
future work.

2 RELATED WORK

Our work builds on top of a rich research landscape for information vi-
sualization toolkits and systems. We structure our overview of related
work by separating discussion of influential theoretical background,
programming frameworks, toolkits, and systems that are related to our
work.

Theory: Any expressive system facilitating flexible mappings of
data to visual variables owes a lot to the semiological research of
Bertin [4, 5]. Mackinlay [24] provided further foundation and pre-
sented automated tools for powerful modular visualization design.
Shneiderman [30] analyzed the data types and tasks in information
visualization, and presented a taxonomy for them. Card et al. [8] or-
ganized previous visualization designs, and presented categorization
of data types and visual mappings. In our demonstrations and evalua-
tions of iVisDesigner, we will highlight its coverage of the information
visualization design space.

Data Flow Systems such as ConMan [19], AVS [32], IRIS Ex-
plorer [15] and VisTrails [3] use a pipelined approach and flow di-
agrams to represent the progress from data to visualization. These
systems are particularly good at defining data transformations, but not
very flexible for defining interlinked mappings from data to graphi-
cal elements. In addition, pipeline-based systems focus on represent-
ing the pipeline itself, there is little screen estate left for displaying
and editing the visualizations. Our work provides an integrated rep-
resentation and manipulation of graphical mappings, with all graphi-
cal elements created, presented and edited in the same canvas which
dominates the user interface, allowing for better understanding of the
overall visualization design.

Programming Frameworks and Languages: Drawing APIs and
toolkits such as OpenGL, Java2D, HTML5 Canvas, and Processing [2]
define programming interfaces to draw low-level elements. Even for
experienced programmers, creating visualizations with these APIs di-
rectly is not straightforward. Thus visualization frameworks have been
created for better abstraction. The InfoVis Toolkit [13] and Impro-
vise [36] provide a set of basic widgets. Chi et al. [9] proposed a
spreadsheet approach. “behaviorism” [14] uses three graphs to rep-

resent dynamic visualizations. To create novel designs, users need
to create new widgets or inherit existing ones. Heer et al. proposed
Prefuse [21, 1], a toolkit for interactive visualization. It first trans-
forms abstract data into visualizable form by a filtering process, and
renders the visualizable form by using a view process. It allows for
advanced integration of existing operators to create novel techniques,
but typically users will need to define new operators in the process.

Declarative models and languages for information visualization
have been presented [38, 37]. Protovis [20, 6] provides a declarative
language for information visualization, designed and implemented in
Java and Javascript. Bostock et al. designed D3.js [7], a Javascript li-
brary for creating web-based visualization designs. It facilitates the
manipulation of DOM elements with data. All of these programming
frameworks require users to write programs to combine visualization
components. The framework of our system is similar to D3. Both
operate by defining and parameterizing mappings from data items to
graphical elements. D3 takes a programming-oriented approach, while
our system takes an interactive design approach: users create visual-
ization designs, and provision for end-user interaction via the web-
based user interface.

Interactive Toolkits: Vector-based drawing software, such as
Adobe Illustrator, is widely used for graphical design, and we drew
some inspiration for our user interface from such products. While it
is possible to create visualizations with such design tools, there is no
support for parameterizable mapping from data to graphics. Graphi-
cal items have to be created individually. On the other hand, a lot of
commercial software has the functionality to create visualization de-
signs for data interactively, for example the chart feature in Microsoft
Excel and similar spreadsheet software. Web-based systems such as
ManyEyes [34], Sense.us [22], or CommentSpace [39] focus on col-
laborative visual analysis. Most of these systems are focused on using
and customizing several predefined templates.

Tableau is a highly sophisticated state-of-the-art commercial visu-
alization system, providing good flexibility for visualization designs.
However, it is still predominately template-based, which increases
ease of use for beginners but limits free-style design explorations. In
contrast, we focus on more fine-grained control and flexible combina-
tion of graphical elements in the pursuit of novel design combinations.

For multivariate data, Claessen et al. [10] allow users to posi-
tion axes and put scatterplots and links between them interactively.
However, it only supports multivariate data and axis-based visual-
ization designs. Sketch-based interactions, like in SketchStory [23]
and SketchInsight [35] have been explored. While sketch-based in-
teractions are very intuitive, these systems currently only support a
very limited set of designs. Bret Victor presented a tool [33] that al-
lows users to define drawing procedures with geometrical constraints,
which are parametrized in an interactive canvas. It requires procedural
thinking, where users define loops to draw simple visualizations such
as a scatterplot. In our system, we use a declarative approach, where
loops are defined implicitly by data selectors. SageBrush [27] uses
“partial prototypes” to define spatial properties for “graphemes”, and
supports editing of primitive properties. Our system expands on this
theme by enabling data transformation and generation, and support-
ing interaction with designed visualizations. Lyra [28] is a very re-
cent addition to the interactive visualization design landscape. Based
on the JSON-based declarative visualization grammar Vega [31], it al-
lows users to define visualizations interactively by constructing scales,
guides and marks. Sophisticated layouts and transformations are en-
abled via transformation pipelines. Lyra and Vega only operate on
tabular datasets, while our work also supports hierarchical datasets
with a fixed schema and references between data items. Lyra is more
oriented towards designing a single piece of visualization, while our
system focuses on canvases that allow users to draw and link different
designs. Furthermore, our system supports designing interactions such
as brushing and linking.

3 DESIGN PHILOSOPHY

The framework of iVisDesigner is designed to represent visualizations
that support interactive user manipulation, all within a web-based in-
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Fig. 2. The interface of iVisDesigner. (1) Menu Bar: Commands for loading or saving visualization designs, view settings, login and logout. (2)
Tools Panel: Tools for moving objects around, creating new objects and changing the view. Grouped into different categories. (3) Schema Panel:
Shows the structure of the dataset. Allows selection. (4) Objects Panel: Shows the objects currently in the visualization design. Allows selection.
(5) Style Panel: Adjust graphical styles for currently selected objects. (6) Property Panel: Adjust properties of currently selected objects. (7) The
canvas to draw the visualization. In this example, a visualization of Beijing Air Pollution data is presented. There are two linked views, the left
view shows the timeline plots of PM2.5 indexes for each measurement station on top of a map, the right plots shows the trends of the PM2.5
indexes, wind strength, temperature and humidity. This visualization is designed solely through user interaction with iVisDesigner, without textual
programming.

terface and canvas. The high-level design choices of iVisDesigner are
based on the following idea: Allowing for interactive visualization cre-
ation, editing and interaction in an unified interface, where the space is
dominated by a canvas showing the emerging visualization. We focus
on enabling users to freely place graphical elements and links between
them, instead of simply designing a chart or template visualization.

Our overall approach can be characterized as introducing support
for data influx and manipulation to the common usage paradigm of
interactive vector-based drawing software. By allowing users to de-
fine mappings from data to graphical elements, we enable them to di-
rectly create and manipulate groups of elements simultaneously, which
tremendously reduces the amount of work to create visualizations.
Transformed, aggregated, or otherwise generated data can be attached
to the dataset, providing more capabilities, such as histograms and
graph layouts. Graphical elements can be manipulated via dragging
and brushing, which affects the underlying data attributes, enabling
the design of interactive visualizations.

4 DESIGN

In this section, we present the workflow and design details of iVisDe-
signer. We first give an overview of our framework, which is designed
to represent visualizations, render them, and allow users to manipulate
them interactively. We then discuss our user interface design, explain-
ing how users can create and edit the different components.

4.1 Framework

The framework of our system is illustrated in Figure 3. Data is loaded
from the Data Source, transformed into an internal representation, and
then enumerated or decomposed into individual elements by various
Data Selectors. The decomposed elements are then passed into Ob-
jects for visual mapping or data generation. For visual mapping, the
resulting graphical elements are simply rendered on the canvas. For
data generation, the results are additional data attributes (e.g., a his-
togram) that can be attached back to the data representation. In addi-
tion, users can create and attach new data from scratch, for example,
creating a range of integers from 1 to 100 for numbering purposes.
Multiple mappings and transformations can co-exist in the same visu-
alization, and can refer to each other.

Our data representation is based on a hierarchical model similar to
JSON, but allows for references among objects. Data items are a set of
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Fig. 3. The framework of iVisDesigner. Data is first being enumerated
by user-defined data selectors, and then passed to different mapping
objects. These objects may refer to each other, and finally generate
the graphics or attach generated data back to the data representation.
Users can also manipulate the graphics, and modify the underlying data
if permitted.

key-value pairs. Each value can be a single data item, an array of data
items, a primitive value (number or string), or a reference to another
data item. The structure of the dataset is defined by a fixed Schema,
which stores a definition of the data structure. This requires the items
in a single array to be homogeneous, i.e. they must be of the same
type and structure. This ensures that we can perform mappings from
each array of objects to graphical elements in a unified way. Given that
the arrays in a given dataset are homogeneous, it is easy to construct a
schema for a dataset automatically.

This dataset definition is relatively more expressive than tabular
structures. For example, in Figure 2, the depicted dataset contains a
set of air-probing stations, each with a set of measurements, which are
visualized individually on the map, and collectively on the timeline
plot. Users can place small visualization designs for inner-level data
within a larger plot.

Users can create attached data by creating special objects in the
system. These can, for example, compute basic statistics or run a
force-directed layout algorithm.

Data Selectors, which are automatically created from user interac-



Axis1 (MPG)

Axis2 (Displacement)

Scatter1 (MPG)

Circles1 (Cars)

Axis2

Scatter

CirclesCars

Axis1

Data Graphics

(1) Basic Scatterplot

(2) Scatterplot with Parallel Coordinates

AxisN

CurvesCars

Axis1

Data Graphics

...

Color Mapping

Fig. 4. Two basic visualization designs: (1) Scatterplot (2) SPPC, as
in [40]. The scatterplot consists of two Axes, a Scatter and a Circles
object, with Axes and Scatter objects providing location information for
the Circles object, which maps cars to circles.

tion, are used to select a set of data items or values from the dataset.
While Data Selectors are created via the UI (e.g. by clicking on an en-
try of the Schema panel or selecting from a dropdown menu in the
Property panel), they also do have a syntax (string representation),
where [array] means an enumeration of all the elements in the ar-
ray, and field means a particular field from the current object. The
Data Selectors can be specified in a path-like manner, joined by “:”.
For example, [cars]:acceleration means an enumeration of
all (say n) cars in the dataset, taking the value of the acceleration field
for each, resulting in an array of n numbers.

Reference fields can also be selected in the Data Selectors, for
example, [edges]:&source will select the source nodes for
the edges in a graph (nodes are stored in a separate array), and
[edges]:&source:valuewill select the value attributes of the
source nodes.

A visualization consists of a set of Objects, which define mappings
from data to graphical elements, or generate new data attributes and
attach them back to the data representation (as shown in Figure 3,
Mapping and Generators). Objects in our system can be of various
types, specifically, they encompass Graphical objects, Guide objects,
and Generator objects as discussed below.

A Graphical object represents a mapping from a set of data items
to a set of graphical elements. Examples are Circles, Lines, Polylines,
Arcs, and LineThroughs. Each Graphical object has a Data Selector
associated that specifies the set of data items to map from, and each
item in this set is rendered as a graphical element.

The properties of a Graphical object, such as the location and radius
for the Circles or end points for the Lines, are provided by Guide ob-
jects. These objects transform data values to various properties such
as location, width and color. Examples are Axes, Scatters, and Maps.

Generator objects attach derived data to the dataset. For exam-
ple, they can calculate the average value for a group of data attributes
(Statistics object), group them into bins (Aggregator object), compute
an expression on a set of data items (Expression object), or perform a
force-directed layout algorithm on a graph and give each node a po-
sition (ForceLayout object). Generator objects mainly perform data
transformations, they attach generated values to the dataset. Guide ob-
jects are displayed and edited on the canvas, and mainly deals with
visual properties. There is no exclusive separation between the two
categories, and one object might be of both kinds at the same time.

Generators can also accept user interaction. A BrushingValue ob-
ject accepts brushing actions on a given visualization, and attaches
corresponding data attributes to a data item that got brushed. These
generated or derived values are attached to the dataset, which can then
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Fig. 5. The properties and styles of the objects can be defined in
the corresponding panels. Styles are drawing actions, such as Fill and
Stroke; properties define the shape of the object, such as Center and
Radius. Both, properties and styles can be defined as plain values or
mapped from data via the UI.

further be used in other parts of the visualization. For example, they
can be used to construct brushing and linking functionality for a visu-
alization, enabling basic visual analytics.

Objects can be nested into a Component object, which is bound to
one Data Selector and which provides local coordinates for the ob-
jects inside it. Since our data representation allows for a hierarchical
structure, users can design sub-visualizations and scatter them around.
For example, one can create a component to design a small glyph for
representing different data items. In section 6, we show an example
that uses components to create small timeline plots for each item (cf.
Figure 2), and Figure 7 showcases some custom glyphs.

Note that object types are not mutually exclusive. One object might
have several types simultaneously. E.g. an Axis is at the same time
a Guide object and a Graphical object showing tick markers. Force-
directed layout is classified as a generator object, because it generates
coordinates, but it can also be a guide object at the same time (users
indicate a rectangle for the layout region).

Our framework can be extended via programming by defining ad-
ditional custom objects, ranging from primitive graphical elements to
complex visual designs (e.g. a special type of glyph).

A comprehensive list of currently supported objects and their prop-
erties, as well as the interactions to create each of them, can be found
in the supplementary material.

4.2 Interface and Interaction

We now discuss the user interactions in iVisDesigner. The overall user
interface is shown in Figure 2, together with an example design (de-
tailed in subsection 6.2). It consists of a menu bar, a set of panels, a
status bar, and a drawing canvas. There are five flexible panels that
users can freely move around, resize, minimize or hide: The Tools
panel presents a set of tools, including select/move, drag, brushing,
pan/zoom, and object creating tools. The Schema panel shows the
schema (hierarchical structure) of the dataset; users can select arrays
or fields in the dataset. The Object panel shows a list of all graphical
objects in the visualization and allows users to select, reorder or re-
move them. The Style panel is used to define graphical styles (series
of drawing actions) for graphical objects. The Property panel lets
users edit properties of selected objects. In addition, a data inspector
panel is available, it can be shown when users need to examine the
actual data values.

After an object is selected in the object panel or directly from the
canvas, the property and style panels let the user edit the properties
and drawing actions.

We aimed for a uniform interface, flexible for different tasks, and



intended to maximize the space for the drawing canvas, resulting in
the five panels above. The tools panel helps switch between different
mouse tasks (select, interact, create). The schema panel and object
panel are for selecting data elements and visualization objects, while
the style panel and property panel allow users to edit the selected ob-
jects in an uniform way.

In the following sections, we will discuss typical steps to use our
system, including actions to create a visualization, edit an existing de-
sign, and interact with them. Since the system is flexible, users could
go back and forth among these steps at will.

4.2.1 Creating Visualizations

A visualization is created by adding graphical objects to the canvas.
Typical steps to create a graphical object include: (1) Selecting a de-
sired set of data items from the schema panel. (2) Selecting the desired
type of object from the tools panel. (3) Providing initial positioning.
Other properties of the newly created object will be set to default val-
ues, for later adjustment.

While in other systems, such as SageBrush, Tableau or Lyra, one
directly assigns data properties to marker properties, and the system
will automatically determine scales and their positioning (that might
be changed later), we require users to create guide objects (such as
Axes, Scatters) explicitly. Since our canvas is virtually infinite, and
there might be multiple existing visualization parts on it, automatically
creating axes is not as straightforward. Therefore, to create a visual-
ization, users first need to create guide objects as a frame, then add
graphical elements. For example, to create a scatterplot, users need to
first create two orthogonal axes, add a scatter between them, and then
put, e.g., circles on the scatter.

References in the dataset can be utilized. For example, in a node-
link graph visualization, the edges are defined as two references to
nodes, source and target. Suppose we already visualized the
nodes as a scatterplot. We now want to create lines for the edges to
make a node-link visualization. The lines are bound to the [edges]
array, so each edge is drawn as a line. To specify the two end points
for each edge, we need to use the locations provided by the nodes’
scatterplot. In this case, the user first highlights the “ref” button next
to the source reference field, indicating she/he is going to use the
node referenced by that field, and clicks on the scatterplot to specify
the first end point. Then the user highlights the “ref” button beside
the target reference field, and clicks on the scatterplot to specify
the second end point and lines are created. In short, the scatterplot de-
fines a mapping from nodes to locations, and the reference field tells
the scatterplot which node to use for the mapping. This is perhaps
the most difficult-to-understand interaction in our system. While users
in our evaluations were able to easily follow our guidance to create
node-link graphs, it proved challenging for some of them to create
other forms, such as the matrix and arc-based graph visualizations in
Figure 9, given just a short amount of learning time.

To reduce the burden of complex interactions to create common
designs like a scatterplot, we defined a small set of templates (scatter-
plot, timeline plot, node-link graph), that allows users to create such
visualizations simply by selecting the data attributes and dragging a
rectangle on the canvas. The template will create the required graph-
ical objects and guide objects for the user automatically, and the user
can adjust the design later. This also allows novices to get started with
the system more easily.

4.2.2 Editing Properties and Drawing Styles

After having created objects, users can further modify their properties.
This is done via the property panel and the style panel. The property
panel shows a grouped list of property-editing UI components. Most
of the properties for an object can be set as mappings, such as linear
mapping or categorical mapping, which are guide objects created im-
plicitly by the property editor, allowing users to assign mappings from
data attributes to actual properties of each graphical element repre-
sented by the object. For example, the “radius” property of the circles
object can be assigned as a constant value, or as a linear mapping of
some data attribute. The “center” property of the circles objects can be

set by picking a guide object or a static point on the canvas. Properties
can be copied and pasted among objects. Pasting can be done either
by value or by reference. If pasted by reference, changing one of them
will cause the others to change as well. For example, we might de-
sign a set of parallel coordinates and a scatterplot, and share the color
mapping for the parallel coordinates and the scatterplot. Through copy
and paste, one can reuse the properties. However, one drawback is that
there is no easy way to indicate what objects share the same mapping
in the interface. Currently, the user has to remember that. Another
limitation is that our current version does not provide a straightfor-
ward way to visualize the scales of the mappings. In future versions,
we would like to allow users to drag the mapping properties out onto
the canvas and draw them as interactive scales. This would solve both
of the above problems.

The style panel works similar to the property panel, showing a list of
drawing actions for a graphical object. In the rendering process, each
graphical object generates a graphical path, for example, lines, circles,
Bezier curves or composites of these, and this path is rendered to the
canvas by performing the drawing actions specified here. For example,
the “Stroke” action will stroke the path, and it has four properties:
width, color, line join and line cap. The “Fill” action will fill the path
with a user-defined color. Users can add/remove actions, and reorder
them in the style pane. The properties for drawing actions in the style
panel can also be mappings, as in the property panel. The user can add
or remove these actions in the style panel. Styles can be considered
a special set of properties for a graphical object frequently used in
visualization designs, and they commonly consists of multiple actions.
This is the main reason we separated them from the property panel into
an individual panel. Currently we only have stroke and fill actions, in
the future, we would like to support more actions, including such that
alter the path (e.g., distortion, outline, smoothing), similar to those in
Adobe Illustrator.

Basically, we employ a property-editor based approach, which pro-
vides a set of uniform editing steps for each type of properties. The
editing interfaces are automatically generated according to the prop-
erties declared in the object types, which is particularly useful for
implementing new types of objects. From the users’ perspective, a
uniform editing experience helps them to learn the system effectively
and speedily.

4.2.3 Interacting with Visualizations

In addition to creating and editing visualizations, our system allows a
certain set of interactions to be designed. There are two specific tools
for interactions on the visualization design.

Moving Elements: Users can move graphical elements in a de-
signed visualization, and as a consequence, some corresponding data
attributes might be changed. This should be performed very carefully,
as one could easily produce fake findings, mislead others or get con-
fused when changing the original data recklessly. As a default setting,
we don’t allow the original data attributes to be changed. However,
certain properties can be changed without danger, such as the loca-
tions produced by a force-directed layout algorithm. Another example
consists of users attaching a single attribute to the dataset, and using an
axis and a circle to build a “slider” to control it. Such slider-controlled
attributes could be used in different situations, such as, e.g., defining
the range of a filter property, resulting in an adjustable filter.

Brushing Value

Data

Attached Data

Graphical Elements

Brushing (Lasso Tool)

Mapping

Fig. 6. The internal process of brushing. When the user brushes over
a set of graphical elements with the lasso tool, they are collected and
passed to the BrushingValue object (which can be created and activated
by the user). The BrushingValue object then attaches data back to the
data representation, and the attached data can be used by mapping ob-
jects, which affect the graphics. Users can define and combine multiple
ways of brushing in our system.



Brushing: The lasso brushing tool is paired with the Brushing-
Value object, which attaches a value to each data item, and once data
items are brushed by selecting their graphical elements, their values
will change. Users can then use the values to define graphical map-
pings. This implements brushing and linking functionalities. For ex-
ample, one could set the fill color of a scatterplot as the brushed value,
and use the lasso tool to color the points. Other examples are discussed
in section 6.

Our goal is to enable the design of interactions, not just supporting a
fixed set of interactions. This is achieved by allowing users to modify
attached data attributes in two classical ways (moving and brushing),
and we show that dragging, filtering, and brushing and linking can be
supported from these atomic actions. There are possibilities to define
more complex interactions beyond these, but as the complexity goes
up, users have to create several related objects such as axes and ex-
pressions, which makes the process a little more complicated.

4.3 Limitations

While the framework of our system is inherently modular and object-
oriented, allowing new types of objects to be added easily, it still has
several limitations in terms of expressiveness. The framework is based
on designing and parameterizing graphical mappings from original,
transformed, or user-generated data. This approach has two funda-
mental limitations. (1) Designing adaptive markers, such as automati-
cally determining the width of bars in a barchart based on the number
of bars and the chart width, requires writing specific mathematical ex-
pressions, because this involves dividing the chart width by the num-
ber of bars, which is not a property of any single data item. In general,
our framework does not address the dependencies among graphical
objects, but rather performs mappings individually, so in order to ac-
commodate higher-level layout constraints such as overlap avoidance,
special objects have to be designed in programming. (2) Our system
cannot, without using specific custom layout objects, design recursive
drawings such as tree maps, and as aforementioned, the system doesn’t
support recursively defined data structures directly. One might argue
that tabular structure can represent graphs and trees as well, but our
data selectors can only enumerate arrays of items in the data hierar-
chy. It cannot follow references (such as running a graph/tree traver-
sal). This is also true for other declarative approaches (e.g., ProtoVis,
D3, Vega and Lyra), which are also resolved to using specific modules
for each kind of layout. Abstractions such as [29] might be considered
in the future. These limitations currently exclude a range of possible
visualization designs.

There are also shortcomings that are more easily solvable within the
current framework. (1) Our system currently is constrained in terms
of the type of coordinate systems. Positional mappings are done via
axes and scatters (the map with Mercator projection is the only excep-
tion). It does not currently accommodate circle-based visualizations,
nor are polar coordinates currently supported. In the future, we will
seek to support different coordinate systems. (2) Axes and their scales
are currently intrinsically linked. For simple scatterplots and parallel
coordinates this works fine, but it becomes tedious, although not im-
possible, to share the same scale for different data attributes. There is
currently no way to use axes for numerical properties such as widths
or radii (and this would be useful for designs such as error bars). This
could be solved by additional property-editing interactions and better
separation of axes and scales in the future. (3) There is currently no
way to specify the order of data item enumeration, which would be
useful if we want to stack data items or link through them in different
manners. This could be solved by adding a sorting attribute to the data
selectors. (4) The system currently lacks a way to specify more gen-
eral graphical paths. The LineThrough object can draw paths through
data points, which is somewhat restrictive: if we want to fill the area
below a timeline plot, or between two of them, we need a more flexi-
ble way to define paths to connect static points and sequences of points
together (similar to the “Pen” tool in Adobe Illustrator). The conse-
quence is that our system is less expressive at defining shapes, and
more oriented towards line-based visualizations. A general “pen” tool
would be desirable.

Despite these limitations, our system can still support an extensive
set of visualizations. In section 6, we showcase a variety of examples.

5 IMPLEMENTATION

The system is implemented in HTML5 using jQuery and other open-
source libraries. A backend server written in Python Django is used to
store the metadata for the datasets and saved visualizations. Here, we
discuss some notable aspects of the implementation.

Input Format: The datasets are loaded as JSON objects, where
the references are stored as the referenced items’ ID (each data item
having a unique ID). For our current system, we did not focus on sup-
porting multiple data formats, but conversions from CSV or Excel-like
data sources are trivial (without performing join operations). Dataset
structure will influence how well certain designs will be supported.
For example, if the dataset from subsection 6.2 had been stored as a
flat table instead of a hierarchy, we would not be able to create that
visualization, unless we added a special “Grouping” generator object,
similar to Lyra’s approach).

Rendering: We employ multiple layers of HTML5 Canvas. The
renderer maintains the status of these canvases, and executes the vi-
sualizations on them. There are four layers in our current prototype.
The Main layer contains the graphical elements, the Front layer shows
selected elements, the Overlay layer shows temporary markers, such
as alignment indicators during user interaction, and the Back layer dis-
plays the background color and grid. By using layers, we eliminated
the need to redraw the entire visualization when the user selects a sin-
gle element, achieving better responsiveness. In addition, the renderer
also manages a viewport, allowing users to move or zoom the visual-
ization, or to export the current view as PNG or SVG files.

Serialization: The visualization is stored as a set of Javascript ob-
jects internally; to save a visualization, we need to serialize them to
a storable format. We implemented a general Javascript object se-
rializer to support this task, which is capable of maintaining refer-
ences between objects and retaining type information, which are criti-
cal for correctly restoring a visualization. To enable this, we assign a
unique identifier (UUID) for each object, and store object references as
UUIDs. Type information is preserved by recording an identifier for
each registered object type, and restoring the “constructor” attribute
for each object. The benefit is that we do not need to write a pair
of serializing and deserializing functions for each object class, which
reduces programming effort and the possibility of bugs.

Backend Server: The system operates mainly in the browser, but
like every web application, it requires a backend server to provide data
and store information. The backend server manages user accounts,
datasets and visualization designs. It was implemented in Python
Django and Twisted. The Django part is responsible for managing
user credentials, storing the metadata of all datasets, and saving and
loading of visualization designs. The metadata of datasets consists of
the data description, data schema, and a URL for the data content. We
used the WAMP protocol (based on WebSockets) in a Twisted server,
which is connected to a Redis database. It provides real-time updates
for changing datasets. Changes in the dataset can be posted to the
web-based interface, and the system will update the visualization with
the changed data. One can also write scripts that collect data from the
web, and send it to iVisDesigner (either replacing original or providing
incremental updates). For example, Figure 1 (3) illustrates real-time
monitoring of a server’s CPU, RAM, and network usage.

Embedding: Users can export their designs and embed them into
their own websites or web applications. The datasets and visualization
designs could either be retrieved from a server, or embedded statically.

6 EXAMPLE APPLICATIONS

In this section, we present a set of visualization design examples on
different datasets, with the goal of illustrating the flexibility and ex-
pressiveness of our system. Different types of datasets are chosen,
including multidimensional data, time series data, and graph data. We
also demonstrate a design for Sina Weibo (A Chinese microblog ser-
vice similar to Twitter) user data, and even some artistic designs with-
out an underlying dataset.
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Fig. 7. Glyph-embedded Multidimensional Data Visualization. This
design is based on the SPPC design [40], connecting a scatterplot with
parallel coordinates. The points in the scatterplot are replaced by a set
of glyphs, showing four attributes for each item.

6.1 Multidimensional Data

iVisDesigner can flexibly arrange axes like Flexible Linked Axes [10],
whose design space is subsumed by our system. Figure 4 (2) is an ex-
ample of linked-axes and scatter-plot-based visualization designs. The
dataset used there is the 1983 ASA Data Exposition Cars dataset [11].
iVisDesigner emphasizes expressiveness. For example, we can design
mini-glyphs for Cars with the component object, draw the glyphs on a
scatterplot, and link them to a set of parallel coordinates (Figure 7).

Fig. 8. Aggregator objects group values into numerical fields, which
can be used to draw a histogram of a particular data attribute. In this
example, we plotted the histograms of MPG and Displacement attributes
in the Car Data, and also a 2D histogram to show their joint distribution.

Generator objects can be used to compute the statistics of a data
attribute, including basic statistics such as min/max, mean, and more
involved ones such as histogram. In Figure 8, we show an example us-
ing the histogram generator, an Aggregator object. This object gener-
ates an array of bins to form a histogram of the selected data attribute,
which can be displayed in various ways.

6.2 Time Series Data

In Figure 2, we presented a visualization of the Beijing Air Pollution
Dataset, crawled from two websites that update hourly. The dataset
contains 36 stations, each of which has a name, a geographical loca-
tion, and a time series of two weeks of measurements. The visualiza-
tion consists of two different charts. The left chart is a set of timeline
plots on a map, each representing a station’s measurements. It shows
the measurements for each station, allowing comparison between sta-
tions at different locations. The right chart is a single timeline plot,
which contains the timelines for all of the stations. This chart shows
the main trend of all the stations, while revealing some outliers. The
left-hand visualization consists of a Map object for the geographical
coordinates, two Axis objects, a Scatter object and a LineThrough ob-
ject, connecting all the points in sequence.

6.3 Graph Data

A graph visualization with both, node-link diagram and adjacency ma-
trix representations, is presented in Figure 9. The graph is based on

Fig. 9. Visualization design for the co-occurrence network graph from
Les Misérables. Left: Node-link diagram with force directed layout.
Right: adjacency matrix design. A brushing and linking mechanism for
the graph edges is designed into this visualization. When the user se-
lects a set of edges from either the left view or the right view, these
edges will be highlighted in both views.

character co-occurrence in Hugo’s Les Misérables1. The dataset con-
tains a set of nodes and a set of edges, each edge referencing source
and target nodes. The node-link diagram is constructed by first cre-
ating a ForceLayout object, which runs the Fruchterman-Reingold al-
gorithm [16] to compute the layout, and then attaching the resulting
coordinates (x and y values) to the nodes. The nodes are then drawn as
a scatterplot of the attached x and y values. The edges between nodes
are drawn using references to the node scatterplot.

The matrix representation is created by first assigning an index for
each node by the Expression object, then the edges are scattered as
Circles with the source node’s index as the x axis, and the target node’s
index as the y axis. Since the index attached by the Expression object
can be changed, users can use the “MoveElement” tool to drag the
labels on the left of the matrix to re-order the nodes.

This visualization design also supports brushing and linking. We
added a BrushingValue object for the edges, so users can select a set
of edges in the node-link diagram or in the matrix, and get them high-
lighted in both views. Since the BrushingValue object supports brush-
ing both numbers and colors, we can color the edges or change their
widths by brushing. What graphical attribute (color, width) to brush is
up to the user. With our system, users are free to design their way of
brushing and linking, and have end-users perform it interactively.

Fig. 10. Weibo User Visualization. The datasets were crawled from
Sina Weibo, including the metadata of the recent tweets of a selected
user, their followers and friends. This visualization shows the user’s tra-
jectory in a map view, and links the map view with the time axis. Scat-
terplots of four joint distributions are shown. Due to privacy concerns,
the data shown here is synthetic, roughly modeled on observed distri-
butions only for illustrating the visualization design. Readers should not
draw any conclusion about Weibo users from this visualization.

6.4 Social Network Data

Next, we present an example with flexible linking between different
views. We set up a data connection with WeiboEvents [26], which
crawls data from Sina Weibo for iVisDesigner. The user can enter

1Dataset compiled by Donald Knuth, retrieved from

http://bl.ocks.org/mbostock/4062045

http://bl.ocks.org/mbostock/4062045
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Fig. 11. Interactive Bézier-curve illustration: users can drag the four
control points to change the shape of the curve.

an account name in Weibo, then the crawler will crawl the account’s
tweets, friends and followers, and send the resulting dataset to iVisDe-
signer, where users can create visualization designs. Figure 10 shows a
visualization designed for such a dataset. It consists of a map showing
the account’s trajectory by connecting all of its geo-tagged tweets on
the map. The map is linked with a time axis, revealing where the user
was located during each time period. The right side contains several
scatterplots, showing the statistics of the account’s followers. Users
could employ our system to create and connect various components,
for example, they could move the time axis around, and see the con-
nections more clearly, or link the map to the bottom timeline.

6.5 Generating Data from Scratch

In iVisDesigner, users can also create graphical designs without using
an underlying dataset. This can be useful, e.g., to illustrate some math-
ematical concepts. In Figure 1 (6), we plotted the Butterfly Curve [12]
on the canvas. This is done by first creating a Range generator object,
which creates a range of numbers from 0 to 24π . Then, we created
two Expression objects, each of which takes the generated numbers
in the range, computes the parametric expressions for the x and y co-
ordinates, and attaches the values to the Range’s items. Finally, we
created two Axis objects, a Scatter and a LineThrough object to visual-
ize the function. The radii of the Circles are also bound to the function
value in this case. After initial setup, users can interactively change
the Range and the Expression as well, or define other mappings such
as the color of the Circles.

In Figure 11, we created an interactive illustration of Bézier curves.
We first created a Range of numbers from 0 to 1 as the t parameter
in the curve, then created four Circles as the control points. Next we
created three Axis objects connecting the four control points, then two
Axis objects between the previous three, one Axis between the previ-
ous two, and finally the LineThrough that connects all the points in
the Bézier curve. After the configuration, users can move the control
points freely, the curve will change according to the user’s interaction.

For these examples, we didn’t employ any dataset. In our system,
users can not only create data visualizations, but also create mathe-
matical illustrations or even artistic designs, using a set of graphical
objects and generator objects.

7 EVALUATION

In this section, we first present a performance evaluation of our system
and then show the results of an informal user study we conducted.

7.1 Performance Evaluation

We analyzed the overhead added by iVisDesigner’s mechanism for
rendering visualizations. Our experiments were done on a MacBook
Pro with 2.6GHz Intel Core i7 processor, 8GB RAM, running MacOS
X 10.9.2. The browser used was Google Chrome 33.0.1750.146. We
compared the rendering performance of our system with hard-coded
Javascript and D3.js.

We created three visualization designs for the test: (1) Scatterplot
with uniform size: a scatterplot for the Cars dataset (406 cars), show-
ing MPG and Displacement, with circle size 5. (2) Scatterplot with
mapped size: the same scatterplot, but the circle radius is mapped as

the number of cylinders. (3) Timeline: A timeline plot showing min-
imum temperature in a particular place over 115 days. The times to
render these visualizations are 7.3ms, 7.6ms, 0.3ms respectively. The
hardcoded version runs 5 to 7 times faster (1.7ms, 1.5ms, 0.04ms) than
our system. This is because we have an extra layer of data enumeration
and mapping, which involves a lot of function calls in the code. D3.js
is around 6 to 30 times slower (61.3ms, 52.2ms, 11.1ms) than our sys-
tem. Since our system uses HTML5 Canvas as the rendering engine, it
is not a fair comparison with D3.js, which renders graphical elements
as SVG elements, but since D3.js is a successful programming-based
visualization framework that is seen as reasonably efficient, we see this
result as encouraging. We chose Canvas as the rendering engine be-
cause it is very fast, and we do not rely on the simplified mouse events
provided by SVG, since our system itself is responsible for handling
mouse events.

We also measured the amount of time to render the visualizations
in our design examples. The Graph in Figure 9 with 77 nodes and 254
edges, takes 43.54ms to render, the SPPC in Figure 4 (2) with 406 cars
takes 28.61ms, and the Beijing Air Pollution visualization in Figure 2
with 3132 measurements for 36 stations takes 90.49ms to render.

The results of the performance evaluation shows that our prototype
system is able to handle visualizations with hundreds or a few thou-
sands of graphical items at real-time or at least interactive frame rates.
The performance can be further improved by incorporating optimiza-
tion techniques, such as reducing the number of function calls and
auxiliary objects in the rendering process.

7.2 Informal User Study

We conducted an informal user study for our system. The user study
was designed to solicit feedback from real users of the system, after
showing and teaching them the basic principles. We recruited 8 users,
4 male and 4 female, ranging in age from 24 to 32 years, with a median
of 25, most of whom had Computer Science backgrounds and were fa-
miliar with computer-based visualization concepts. We also recruited
one of them for a supervised study in the style of a thinking-out-loud
cognitive walkthrough.

The informal user study was conducted on an online web interface,
with participants performing various tasks, and optionally asking the
supervisor questions. After a short introduction of the iVisDesigner
tool and the goal of the study, users watched an 8-minute video tu-
torial (similar to the supplementary video) explaining basic steps in
creating a scatterplot for the Cars dataset, a graph visualization of the
character co-occurrence data, and some brushing and linking interac-
tions on existing designs. Next, they were asked to try the system by
following some steps from the video to get an initial sense of the logic
and interactions of the system, and then to try and create their own
designs from what they have learned. Finally, the users were asked to
complete a survey with Likert-scale (2 = Strongly Agree, 1, 0, -1, -2 =
Strongly Disagree) questions. All in all, users spent on the order of an
hour on the user study. These are the average results for the question-
naires: “iVisDesigner is {expressive (1.75), easy to use (0.63), easy
to understand (1.13), useful (1.88) }”, “iVisDesigner is good for { ba-
sic visualizations (1.75), novel visualizations (1.25), multidimensional
data (1.75), graph data (1.50), time-series data (1.63), visual analytics
(1.00), overview (1.75), artistic designs (1.00) }”. Most of the ratings
are towards the top of the scale (2 or 1), with a few lower scores on
“easy to use” and “easy to understand”. Participants believed that our
system is very expressive and useful, and good for designing visualiza-
tions for different types of data. One participant said that the system is
very flexible, he could “make combinatory data/feature selection, for
example, linking 2D and 1D elements together to create a polyline”.
From their textual comments, we observed that participants made use
of templates very well; basic visualization designs could be created
without difficulty. Ease of use and ease of understanding is more of a
challenge for our system; as the participants pointed out, they had to
carefully watch the video to learn the interactions. They also requested
a more comprehensive user guide and tutorial. Usability could be im-
proved by fine-tuning the user interactions. For example, one partic-
ipant suggested we could enhance the highlighting when users select



Fig. 12. A visualization design by the participant from the supervised
study. Each circle shows a cluster of tweets, dots between circles show
the time-dependent movement pattern between clusters.

an element, making it more visible for better guidance. The tool-tip
text in the status bar was also recommended to be moved upwards to
attract more attention.

In addition, we recruited one participant, a researcher analyzing
Twitter feeds for social feature extraction, for a supervised study. We
presented three datasets for the participant to explore. The participant
was asked to construct visualization designs and try to understand the
datasets though these visualizations. During this process, the partic-
ipant could ask for help on how to use the toolkit and he also com-
mented on his mental processes and considerations.

The supervised study was informative and successful in the sense
of user appreciation for the expressiveness, speed, and stability of the
system. The participant experimented with the Weibo user dataset
(discussed in subsection 6.4). Scatterplots were created to show the
correlation of different attributes of a user’s friends, and the partici-
pant made use of the brushing feature between two plots. Also, he
tried to bind the radius of the points to the number of bidirectional
followers. “I could easily discover bot / celebrity clusters. Also, by
varying the radius of each circle proportional to the number of bidi-
rectional followers, I was able to locate commercially used / institu-
tional accounts. I was also able to locate individual / organizational
accounts by looking at the logarithmic scatterplots by having different
types of attributes of users. The labeling is more flexible than other vi-
sualization frameworks.”. The participant also experimented with the
Weibo geographical dataset, which contains a set of users, each having
authored a series of geo-tagged tweets. Before the experiment, the lo-
cations in the dataset were clustered by a K-means algorithm, and the
trajectories of users were grouped as edges between clusters. The user
produced the visualization shown in Figure 12. “I’m able to identify
usage of Weibo on each geographical area in the city. By applying
timeline stamps on each edge between adjacent nodes (clusters), we
can track the user movements between different locations over time.
It is very interesting to see significant amount of communication and
movement between adjacent nodes which can perhaps be the reflection
of the physical proximity between the users.” “I would have spent 1–2
hours to create this visualization by programming, it was done in a few
minutes using iVisDesigner.” The user also tried our system on one of
his own Twitter datasets for a timeline plot, and identified some pre-
viously undiscovered date-time conversion problems in his data pre-
processing. In summary, with some supervision, the user gradually
understood the general process to create visualization designs in our
system, and was able to apply his knowledge to create visualization
designs and understand the datasets.

8 DISCUSSION

In this work, we have presented iVisDesigner, a novel expressive in-
teractive information visualization construction toolkit. iVisDesigner
is able to cover a wider spectrum of possible visualization designs
than previous interactive (non-programming) toolkits. We already dis-
cussed its limitations in terms of expressiveness in section 4. Here we

discuss usability concerns and possible future improvements.
As we increase expressiveness, the interactions to build a visual-

ization design become more complex than required by more single-
purpose toolkits such as [10], because we need to allow specification
of extra design parameters, which other toolkits predefine. Compared
to, e.g. the Flexible Linked Axes work, we need to specify what data
to map from and what types of graphical elements to use, in addition
to the axes and scatterplots. There is clearly a tradeoff between expres-
siveness and complexity. A simple way to improve user accessibility
is to add more templates for existing designs. Users could start with a
common template, and then modify it to satisfy their own needs. Dur-
ing the design and evaluation of the system, we have observed that
designing from scratch is much more involved than modifying an ex-
isting design; providing templates certainly helps lower the barrier to
entry. Another possible direction is to automate some design deci-
sions by trying to predict what the user may want to show, filling in
suggested informed default values for more complex parameters.

The learning curve of our system is not low. One contributing factor
is that we haven’t yet optimized online help and error reporting, but
we are steadily improving on that front. However, when users have
to learn a whole set of new concepts, such as axes, references and
components, it will inevitably take some time for them to embrace the
possibilities and fully utilize their potential for creative designs.

In the framework of iVisDesigner, we did not yet fully consider the
interaction among graphical elements. For example, when drawing a
graph, there might be multiple edges between two nodes, depending
on the dataset. In this case, users might want to define some rules
other than just placing two lines in the same place, for example, dou-
ble the thickness, or use a different color. These types of designs are
not feasible in our current framework (also not in D3.js). We could in-
sert a new step in the pipeline of our system, after the mapping stage.
Once we have all the graphical elements, we can allow users to define
interactions among graphical items before they get rendered.

Dynamic visualization design is another future direction. Up to
now, we have dealt predominantly with static visualizations, with the
exception that we are able to re-render the visualization when the
dataset is changed. However, users cannot define how a graphical el-
ement appears or disappears when a corresponding data item is added
or removed. This could be achieved by adding a property on graphical
elements that would let users specify various types of transitions.

9 CONCLUSION

We presented iVisDesigner, an expressive interactive web-based infor-
mation visualization construction toolkit. Our system was designed to
be a flexible tool for interactively creating information visualizations,
inspired by interactive vector-based drawing tools and established in-
formation visualization principles. The system allows users to freely
place graphical elements, and links between them, on a large central
canvas. We chose a declarative approach to avoid reliance on familiar-
ity with programming and for keeping the usage simple and straight-
forward. Our unified editing interface allows users to create and edit
graphical, guide, and generator objects, enabling the interactive design
of complex visualizations. We presented example applications to illus-
trate the breadth of design possibilities, discussed the limitations and
future improvement possibilities of our approach, and reported the re-
sults of a performance evaluation and an informal user study. We hope
that this work can inspire further contributions in the field of interac-
tive information visualization design.

The source code of iVisDesigner is available on Github:
https://github.com/donghaoren/iVisDesigner.
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