
Charticulator: Interactive Construction of Bespoke Chart Layouts

Donghao Ren, Bongshin Lee, and Matthew Brehmer

Fig. 1. Charticulator enables a chart designer to interactively create a custom chart layout. It transforms a chart specification into
mathematical layout constraints and automatically computes a set of layout attributes that satisfy the constraints using a constraint-
solving algorithm. (Data from https://resourcetrade.earth)

Abstract—We present Charticulator, an interactive authoring tool that enables the creation of bespoke and reusable chart layouts.
Charticulator is our response to most existing chart construction interfaces that require authors to choose from predefined chart layouts,
thereby precluding the construction of novel charts. In contrast, Charticulator transforms a chart specification into mathematical layout
constraints and automatically computes a set of layout attributes using a constraint-solving algorithm to realize the chart. It allows for
the articulation of compound marks or glyphs as well as links between these glyphs, all without requiring any coding or knowledge
of constraint satisfaction. Furthermore, thanks to the constraint-based layout approach, Charticulator can export chart designs into
reusable templates that can be imported into other visualization tools. In addition to describing Charticulator’s conceptual framework
and design, we present three forms of evaluation: a gallery to illustrate its expressiveness, a user study to verify its usability, and a
click-count comparison between Charticulator and three existing tools. Finally, we discuss the limitations and potentials of Charticulator
as well as directions for future research. Charticulator is available with its source code at https://charticulator.com.

Index Terms—Interactive visualization authoring, Chart layout design, Glyph design, Constraint-based design, Reusable chart layout.

1 INTRODUCTION

The ability to create a highly customized visual representation of data,
one tailored to the specificities of the insights to be conveyed, increases
the likelihood that these insights will be noticed, understood, and re-
membered by its audience [4]. This expressiveness also gives the author

• Donghao Ren is with the University of California, Santa Barbara, and
started this work during an internship at Microsoft Research. E-mail:
donghaoren@cs.ucsb.edu.

• Bongshin Lee and Matthew Brehmer are with Microsoft Research. E-mail:
{bongshin, mabrehme}@microsoft.com.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

of this visual representation a competitive advantage in a landscape
awash in conventional charts and graphs.

However, most interactive charting tools ask chart authors to choose
from a collection of standard chart types or templates, such as bar, line,
or pie charts, and they provide limited customization options beyond
the choice of chart type. Besides interactive charting tools, people
also create charts via manual illustration or programming. Illustration
tools such as Adobe Illustrator are insufficient for authoring bespoke
charts because they cannot bind multiple attributes of data to graphical
elements. Meanwhile, programming a bespoke chart using a library
such as D3.js [6] or a declarative language such as Vega [32] provides
considerable control over the encoding of data to graphical marks and
their layout. This approach, however, is accessible only to a small
group of people who have advanced programming knowledge.

In recent years, researchers have revisited the prospect of creating
bespoke charts via interactive authoring, with tools such as Lyra [30],

https://resourcetrade.earth
https://charticulator.com

iVisDesigner [27], iVoLVER [22], and Data Illustrator [16]. Lyra and
iVisDesigner use data-flow models to represent charts. Complex lay-
outs in these models are modeled as data transforms that compute
layout parameters. This makes layout construction a matter of choos-
ing the optimal series of layout transforms and applying them to the
data. These layout transforms are represented as configuration panels
in the user interface. It is tedious to switch between layouts and ex-
ceedingly difficult to compose layouts from scratch. iVoLVER follows
a bottom-up constructive approach where charts are constructed by
creating graphical elements and data-calculation elements individually.
However, for a chart with more than a dozen elements, this becomes
very tedious. Furthermore, iVoLVER currently lacks the ability to lay
out elements except for simple alignment and positioning according to
(x, y) coordinates. Data Illustrator introduces the concept of repetition
and partition, and supports basic layout configurations in the repetition
or partition groups, combining bottom-up and top-down approaches.
However, Data Illustrator can neither produce non-Cartesian charts nor
charts featuring visual links including node-link graphs.

In this paper, we present Charticulator (Fig. 1), an interactive chart
authoring tool that addresses the limitations of existing approaches
by prioritizing the articulation of chart layouts as well as the visual
linking between glyphs. Charticulator allows authors to specify chart
layouts interactively in lieu of programmatically specifying data trans-
formations. It then converts author-specified layouts into mathematical
constraints, and employs a constraint solver to realize the chart. Fur-
thermore, Charticulator supports exporting chart designs into reusable
templates, which can be imported into other systems to visualize other
data. As Charticulator leverages a constraint-based layout specification,
exported templates correctly respond to canvas size changes and differ-
ent distributions of data. The key research contributions of this work
are as follows:
• The design framework of Charticulator, which can be applied to

generate a variety of reusable chart layouts.
• The implementation of Charticulator, which realizes the design

framework by transforming the chart specification into layout con-
straints and incorporating a constraint-based layout algorithm, with
a user interface that enables interactive chart layout specification.

• Results from three forms of evaluation: a gallery of charts to illustrate
Charticulator’s expressivity (Fig. 2), a chart reproduction study, and
a click-count comparison against three existing tools.

2 RELATED WORK

As discussed in surveys by Grammel et al. [13] and Mei et al. [21], there
are many approaches to visualization authoring. We first discuss related
work in visualization authoring based on the classification presented in
Grammel et al.’s survey. We then briefly discuss the constraint-based
authoring of layouts.

2.1 Imperative and Declarative Programming
Programmatic approaches to visualizing data include imperative lan-
guages and libraries such as Processing [25], ProtoVis [5], and D3 [6],
as well as declarative grammars such as ggplot2 [37], Vega [32], and
Vega-Lite [31]. Imperative approaches allow for considerable expres-
siveness at the cost of complexity, and thus involve a steep learning
curve. On the other hand, declarative approaches provide varying de-
grees of expressiveness while obfuscating the programming concepts
that are required when using imperative approaches. For example, Vega
uses a low-level reactive data-flow model which makes it highly flexible
and expressive, while Vega-Lite is a high-level visualization grammar,
which is easier to write but less expressive. Declarative approaches still
require chart authors to write code, which remains to be a hurdle for
those lacking programming skills.

Charticulator’s framework extends these approaches by adding the
concepts of layout constraints and layout composition. Using con-
straints instead of transformations for layout specification allows for
independent and partial layout specifications that can be combined
freely. Separating glyph-level and chart-level specifications eliminates
their dependencies, and thus enhances flexibility. For example, revising
a glyph layout will not break the chart layout, and vice versa.

Recently, to leverage the strength of programming and interactive
illustration with vector graphics software, Hanpuku [3] provides the
ability to create bespoke charts by working fluidly between Adobe
Illustrator and D3. However, the chart author is nevertheless required to
begin the process with D3 and thus understand programming concepts
such as loops and the binding of data to attributes of graphical elements.
In contrast, Charticulator allows for the articulation of novel layouts
along with links and expressive marks, without requiring any coding.

2.2 Template Editing
There are many existing charting tools that employ a template editing
approach [28]. Examples include Datamatic [44], RAWGraphs [19],
Infogram [49], Easelly [45], Plot.ly [52], Piktochart [51], Chart-
Blocks [43], iCharts [48], and Quadrigram [53]. Chart templates are
also widely available in general-purpose authoring tools such as Mi-
crosoft Office (Excel and PowerPoint), Google Docs, and Apple iWork.
These tools provide templates for standard chart types (e.g., bar, line,
and pie charts). The basic workflow is to select (or upload) a dataset,
select a chart template, and then configure template options. These
tools vary in terms of the number of templates, styling capabilities,
interactivity, and extensibility. For example, Plot.ly has the ability to in-
dividually specify the mark type for each categorical series in a dataset.
RAWGraphs and Flourish [46] provide APIs to develop new templates,
allowing developers to add new chart types to the tool. Quadrigram
provides a dashboard mechanism in which multiple charts or widgets
can be presented. It also allows chart authors to add and configure basic
widgets for filter and selection.

However, with the template editing approach, novel chart designs
are not achievable because templates are not typically modifiable by
chart authors. In addition, charts created with a particular tool look
similar to each other as templates inherently limit the aesthetic style of
their associated charts.

2.3 Shelf Configuration
Interactive tools to facilitate exploratory data analysis such as Tableau
(formerly Polaris [34]), Polestar [38], Voyager [38], and Voyager 2 [39]
are not prescriptive regarding chart types and instead opt for a shelf
configuration approach. Chart authors specify the bindings from data
points to corresponding graphical elements by dragging data dimen-
sions as well as derived measures to shelves assigned to mark type, x
and y position, facets, and mark attributes such as color, shape, and size.
The shelf configuration generates a chart and automatically performs
necessary data transformations such as computing quantitative ranges.

However, these systems do not allow both a specification of glyphs
comprised of multiple marks and a fine-grained specification of mark
style, while their underlying chart layouts are specified by templates
that are not configurable by chart authors. Yet, as their drag-and-drop
interactions are easy to learn and use, Charticulator applies similar
interactions for layout specification.

2.4 Visual Building
Recently, researchers have investigated methods for interactively ex-
posing lower-level aspects of chart design that are typically obfuscated
in template- and shelf-based approaches, developing tools that we re-
fer to as visual builders. They provide interactions for binding data
to graphical mark primitives like rectangles, symbols, and lines. For
example, Lyra [30] uses dropzones and connectors to specify the bind-
ing of data dimensions to mark properties and the relative positioning
of marks, respectively. iVisDesigner [27] incorporates familiar drop-
down configuration panels and menus to specify data bindings, and
InfoNice (a.k.a. Infographic Designer) [36] supports expressive mark
design using icons, images, and texts. However, these tools still do not
treat layout as a first-class citizen; a layout is typically inferred from
the data binding operation, particularly when directly applying layout
transformations to mark position and size (e.g., the stacking layout in
Lyra). Another recent tool is DataInk [41], which uses pen-and-touch
interaction to support object-oriented drawing [40]. However, similar
to InfoNice, DataInk primarily focuses on expressive glyphs instead of
layouts, and while it allows chart authors to create hand-drawn layouts,

Fig. 2. A gallery of 12 visualization examples showing the expressiveness of Charticulator. Here we hide legends and chart titles for compact
presentation. More examples along with high resolution images, detailed descriptions, and videos illustrating the creation processes can be found in
the website (https://charticulator.com). Data Source: (a) [59]; (b) [66]; (c) [63]; (d) [64]; (e) [66]; (f) [62]; (g) [57]; (h) [8]; (i) [65]; (j) [61]; (k)
[68]; (l) [67]. Visual Design Source: (b) [58]; (d) [60]; (g) [18].

it is still difficult to create complex layouts such as a stacked bar chart.
Data Illustrator [16] uses a repetition and partition operator for multiply-
ing marks. However, the repetition and partition grid can handle only
simple layouts such as grid and horizontal and vertical stacking, and
these layouts only work with primitive shapes. To create layouts with a
complex glyph, chart creators have to manually overlay multiple groups
of marks that are individually laid out. VisComposer [20] combines
visual programming, textual programming, direct manipulation, and
surrogate objects for chart creation. Different visual encoding design
choices can be arranged in a scene graph editor to create complex charts.
However, VisComposer supports only a fixed set of compositions and
requires programming to create additional visual encodings.

In contrast, Charticulator prioritizes layout as a deliberate design
choice. With multiple levels of partial layout specifications, chart
creators can construct a wide range of chart layouts. Charticulator also
supports layouts incorporating several alternative coordinate systems.
Furthermore, Charticulator allows chart creators to export their designs
into reusable chart templates which can then be imported into other
visualization systems such as Microsoft Power BI (Fig. 8).

2.5 Constraint-based Authoring
Prior work has incorporated mathematical constraints for designing
user interfaces, diagrams, and some forms of graphs. An early exam-
ple is ThingLab [24], which involves connecting geometrical objects
(e.g., lines, points) using constraints via mouse and keyboard interac-
tions. Later, Fogarty and Hudson created the GADGET toolkit [12]
to incorporate numerical optimization for user interface systems. Be-
yond research prototypes, the Android development ecosystem recently
introduced ConstraintLayout [42] as an option to specify widget posi-
tioning in user interfaces: an interactive constraint editor in Android
Studio facilitates constraint authoring by allowing developers to specify
constraints via drag-and-drop interactions. However, these existing
interactive constraint-based authoring approaches only support a fixed
set of objects or widgets.

Constraint-based approaches have also been applied to data visual-
ization. GLIDE [29] is a constraint-based graph visualization system
that allows people to specify visual organization features such as sym-
metry, alignment, or clustering, whereupon these features are translated
to geometrical constraints. Delaunay [10] supports similar constraints
for visualizing hierarchical data. The TRIP system [35] employs a
constraint-based approach for visualization and animation, where the
constraints are specified as a visual structure representation in Prolog.
These existing approaches either focus on graph or tree visualizations,
or they use programming languages for constraint specification. With
Charticulator, we set out to enable the creation of bespoke charts with-
out programming, so we investigated ways to efficiently specify com-
mon layout constraints via a set of well-designed user interactions and
by incorporating data binding into these constraints.

3 CHARTICULATOR

In this section, we first present our design principles for Charticulator
and its conceptual framework. We then describe its user interface and
interactions along with two usage scenarios, and explain our constraint-
based layout approach.

3.1 Design Principles

Charticulator is designed for people who lack programming skills,
which may include designers, journalists, and analysts. To support a
wide variety of chart layout designs, we identified the following three
guiding design principles.
Promote layout as a deliberate design choice. In existing visualiza-
tion authoring tools, layouts are specified either via a set of predefined
templates or by binding data to the attributes that affect layouts (e.g.,
x and y position, width and height of a rectangle mark). To facilitate
the creation and manipulation of diverse layouts without programming,
Charticulator treats layout as a first-class citizen and exposes layout in
the user interface.

https://charticulator.com

Compose a layout using a set of partial specifications. To enable
a flexible way to specify layouts, we break layout specifications into
composable parts. For example, the chart in Fig. 1 incorporates a polar
coordinate layout where wedge shapes are laid out along the circle.
The spans of the wedges are bound to a data value. The text labels are
positioned at the outer-middle point of the wedges. To accomplish this,
we allow for a small set of partial layout specifications to be combined
to produce a variety of complex layouts.

In addition, to support expressive glyph design and custom layout of
these glyphs, we need to be able to express layout relationships within
and between glyphs. To achieve this, we divide layout specification
into two levels: chart-level and glyph-level. Charticulator presents
partial specifications as objects that can be individually manipulated,
and changing one part does not require chart authors to re-specify other
parts. To reduce clutter, Charticulator provides two separate editing
canvases: one for glyph-level editing and second for chart-level editing.
Balance direct manipulation and configuration panels. Most exist-
ing vector graphics authoring tools incorporate direct manipulation of
objects on a canvas, and those familiar with these tools have come
to expect interaction mechanisms such as click-to-select and objects
with draggable anchors. In addition, Metoyer et al. found that people
often treat white space as a manipulable element [23]. Charticulator, as
mentioned above, enables chart authors to directly manipulate layout
parameters such as anchors, margins, and gaps. On the other hand,
many layout aspects cannot be easily expressed as manipulable objects.
For example, glyphs can be stacked horizontally or vertically, or they
can be laid out in a grid. Since a layout is specified as a combination of
partial specifications, we design a concise set of menus and panels to
represent such options that cannot be directly manipulated.

3.2 Framework
Conceptual frameworks play a central role in visualization authoring
tools. For example, the underlying framework of Lyra is the Vega
specification [32], and thus Lyra is largely designed around the structure
of Vega. Data Illustrator uses a framework based on partition and
repetition, and its user interface design is deeply tied to these concepts.
Charticulator’s framework is designed to support easy creation and
composition of novel layouts. Below is the formal specification of the
framework, and Fig. 3 illustrates the use of the framework.

Mark := Rectangle | Symbol | Line | Text
GlyphElement := Mark | Guide | GuideCoordinator |

DataDrivenGuide
Glyph := GlyphElement*, LayoutConstraint<GlyphElement>*
ChartElement := PlotSegment | Link | Mark | Legend | Guide |

GuideCoordinator
PlotSegment := Glyph, (Scaffold | Axis){0..2}, Sublayout,

CoordinateSystem
Attribute := "x1" | "y1" | "x2" | "y2" | ...
ElementAttribute<ElementType> := ElementType, Attribute
ParentAttribute := Attribute
ConstraintType := "equals"
LayoutConstraint<ElementType> := (ParentAttribute |

ElementAttribute<ElementType>){2}, ConstraintType
Chart := ChartElement*, Scale*, LayoutConstraint<ChartElement>*

"*": zero or more; "{0..2}": zero to two; "|": or;
"X<Type>": template with parameter "Type"Notation

3.2.1 Layout Elements
A set of elements can be used either at the glyph level or at the chart
level. Marks are primitive graphical elements (e.g., rectangle, text)
whose attributes such as width, height, and color can be manually spec-
ified or bound to data. Guides are indicators that are visible only during
the design phase and are used for aligning objects (e.g., a horizontal
guide for aligning the top of marks). Guide Coordinators add multi-
ple guides with a layout relationship (e.g., five guides with an equal
distribution) to a glyph or a chart.

The Glyph-level specification includes glyph elements and layout
constraints, which specify position relationships between glyph ele-
ments. Charticulator currently supports only equality constraints. For

Best Bookshelf 2013 - 2017 Fiction

Nonfiction

Marks

Glyph

Layout
Constriants

Glyph-level Chart-level

+

=

Fig. 3. An example illustrating Charticulator’s framework. Inspired by
the Best Bookshelf visualization [61], this example uses three marks to
compose the glyph: a star symbol and two rectangles. The glyphs are
laid out by the plot segment with a horizontal scaffold and a custom curve
coordinate system, which morphs the glyphs into wedge-like shapes. A
text mark is used for the chart title and a legend shows the color scale.

example, a star symbol can be positioned at the center of a rectan-
gle (i.e., star.x = rect.cx,star.y = rect.cy). To determine the mark
position by data, Charticulator incorporates the Data-Driven Guides
technique [15]. A data-driven guide provides data-driven anchor points
from data columns with the same unit (e.g., min and max values of
temperature). Glyph elements can be snapped to these anchor points
by adding layout constraints (e.g., put the star symbol at the anchor
point of the “min” data column). In addition, data-driven guides can be
displayed as axes; to avoid duplicated axes, Charticulator shows only
the first instance. This is useful for incorporating familiar graphical
elements like error bars (e.g., the X-axis in Fig. 9).

The Chart-level specification includes chart elements, layout con-
straints between them, and scales. The most important chart element is
a plot segment, which lays out glyphs according to its scaffolds and/or
axes, and transforms them according to its coordinate system, which we
discuss in Section 3.2.2. Scales specify how data is mapped to attributes
such as width, height, and color, and they can be shared among several
marks. Legends visualize the scales used in the chart. Charticulator
currently uses a predefined legend for each scale type. Links draw
between-glyph connections as described in Section 3.2.3.

3.2.2 Layout Composition
The layout of a plot segment is determined by its scaffolds and axes, and
further determined by sub-layout options, if applicable. A plot segment
has two independent layout directions. The terms we use for these
directions depend on the plot segment’s coordinate system: “X” (or
“Horizontal”) and “Y” (or “Vertical”) for Cartesian coordinates, “Angu-
lar” and “Radial” for Polar coordinates, and “Tangent” and “Normal”
for coordinates along custom curves. Similar to Transmogrifier [7],
Charticulator morphs mark shapes in non-Cartesian systems. However,
while Transmogrifier’s morphing is image-based, Charticulator’s mor-
phing is performed in vector graphics and thus maintains a precise data
binding. For example, a rectangle becomes a wedge shape in a custom
curve coordinate system (Fig. 3).

The X and Y direction of a plot segment can be assigned as a scaffold,
a categorical axis, or a numerical axis. A scaffold stacks the glyphs
sequentially within the plot segment; a categorical axis groups the
glyphs according to their categories to place them with even spacing
along the axis; and a numerical axis positions the glyphs based on their
data values. Fig. 4 shows the layouts produced from the combinations
of scaffolds and axes.

For categorical axes, Charticulator employs sub-layouts to deter-
mine a within-group layout. Charticulator currently supports four such
options: horizontal stacking , vertical stacking , grid , and
circle-packing . However, when a categorical axis is combined with
a scaffold or a numerical axis, the sub-layout does not apply because a
scaffold or a numerical axis positions glyphs based on their data values
(e.g., Fig. 2-c). When no scaffold or axis is specified, we treat all glyphs
as a single group, and thus the selected sub-layout option constitutes
the primary layout (e.g., Fig. 2-f).

Horizontal Scaffold
Ve

rti
ca

l S
ca

ffo
ld

H. Categorical Axis

A B C D

S S S S

V.
 C

at
eg

or
ic

al
 A

xi
s

S

S

S

SZ

W

X

Y

Z

W

X

Y

A B C D

S

S

S

SZ

W

X

Y

A B C D

S S S

S

S

S

S

S

S

S

S

S

H. Numerical Axis

1 2 3 4

b

1 2 3 4

b

Z

W

X

Y

1 2 3 4

b

b

b

b

None
N

on
e

S

S Sub-layout on the group of glyphs

X
Y

V.
 N

um
er

ic
al

 A
xi

s 4

1

2

3

b

4

1

2

3

b

4

1

2

3

A B C D

b

b

b
b

4

1

2

3

1 2 3 4

Scaffolds (not rendered)

Fig. 4. Possible combinations of scaffolds and axes.

3.2.3 Link Construction
Charticulator supports three types of links for displaying connections
between data items: (1) links through a data series (e.g., the link through
each Operating System in Fig. 2-l); (2) links connecting data items on
multiple plot segments (e.g., the link between two axes in Fig. 2-h);
and (3) links from a separate data table (e.g., the links correspond to the
edges in Les Misérables’s character co-occurrence dataset in Fig. 2-f).

Links must be anchored on glyphs, and can take the form of lines or
bands. The shape of links can be straight or curved (Bézier curve, arc).
For example, the straight bands are anchored from the right side of the
starting rectangle to the left side of the ending rectangle in Fig. 2-l,
while the line arcs are anchored at the top of each rectangle in Fig. 2-f.

3.3 User Interface and Interaction
Charticulator’s user interface consists of a dataset panel, a glyph editor,
a layers panel, an attributes panel, and a chart canvas (Fig. 1). We
explain Charticulator’s interaction with two example scenarios. To
see how Charticulator works in action, refer to gallery videos on the
website (https://charticulator.com).

3.3.1 Basic Interaction Mechanisms
Using Charticulator, the chart creator can compose a glyph in the glyph
editor, adding marks and specifying relationships between them. They
can specify the layout relationships between the glyphs either within
the chart canvas or from the attributes panel, which displays attributes
for the currently selected item.

To add a mark to a glyph, the chart creator can simply drag the
desired mark and drop it into the glyph editor. Charticulator places the
mark at its default position, the center of the glyph, and adds it to the
layers panel. To place the mark at a specific location, the creator can
click the mark to activate it and click or drag on the canvas depending
on the mark type. Guides and plot segments share the same mechanism.

In addition to selecting it from the layers panel, the chart creator
can select a mark from the glyph editor or the chart canvas. For the
selected item, Charticulator shows anchors and/or handles, which can
be used to specify the layout relationship between two objects in the
corresponding canvas. For example, the chart creator can ensure the
same gap between a text mark and a rectangle by dragging the anchor
of the text to the top of the rectangle (Fig. 5-left). Similarly, they can
drag a gap handle to adjust the gaps between glyphs (Fig. 5-right).

Fig. 5. Anchors and handles in the glyph editor (left) and in the chart
canvas (right). The green (dot) represents that the anchor is snapped to
an underlying guide.

Fig. 6. Charticulator uses Dropzones [30] for drag-and-drop style data
mapping in the glyph editor (left) and the attributes panel (right).

The chart creator can perform data binding in multiple ways. They
can drag a data column and drop it into dropzones [30] in the glyph
editor (Fig. 6-left), the chart canvas, or the attributes panel (Fig. 6-right).
They can also select the data column from a popup panel. When the
data is bound to mark attributes, Charticulator automatically infers the
appropriate scales (categorical and numerical), which can be manually
adjusted if necessary in the scale editor (Fig. 7-left).

The layout of a plot segment can be specified in multiple ways.
A plot segment provides dropzones for binding data to its principal
directions such as X and Y for Cartesian coordinates in the chart canvas
and in the attributes panel. Once a data attribute is dropped, an axis
is created for the direction. To add a scaffold to a plot segment or to
change the plot segment’s coordinate system, the chart creator can drag
a scaffold button from the toolbar to the plot segment’s dropzones.

For creating links, the chart creator can
specify the shape (i.e., line or band) and type
of links from a popup panel (see inset figure),
and adjust anchor positions directly from the
chart canvas. Charticulator also supports data-
driven visibility; as the name implies, the vis-
ibility of marks is determined by data values.
Clicking on the “Conditioned by” button for
the Visibility attribute invokes a popup panel,
where the chart creator can set a filter via a set
of checkboxes (Fig. 7-right).

As constraints are independently specified, Charticulator supports a
flexible order of operations. For example, after specifying the layout of
a plot segment, the chart creator can alter the glyph design by adding
and removing marks, or by changing layout constraints in the glyph
editor; it is also possible to change the glyph layout after adding links.

3.3.2 Scenario 1: Mobile Operating System Market Share

We will create a chart depicting the yearly market share trends of
mobile operating systems from 2009 to 2016, as shown in Fig. 2-l. The
dataset contains three columns (Year, OperatingSystem, and Share)
and 64 rows. In this chart, the values for each year are shown as a
stacked column, ordered by the Share values. Each operating system
is connected by a band; a crossing of the bands shows a rank change.

We begin by adding a rectangle mark to the glyph by dragging it
from the toolbar into the glyph editor. To indicate the operating system,
we drag the OperatingSystem data column to the fill attribute of

https://charticulator.com

Fig. 7. Specifying data mapping in the attributes panel. (left) Color-
coding marks with Genre and editing the color palette. (right) Conditional
visibility of marks, showing only the first Year.

the rectangle. Then, we bind Share to the height of the rectangle by
dragging the data column to the height dropzone.

Next, we drag the Year column to the X-axis in the chart canvas
to group glyphs by year. To stack the glyphs vertically, we toggle
the “Stack Y” sub-layout option of the plot segment. To order the
glyphs by market share value, we select the Share column among the
order option for the plot segment. We then adjust the gaps between
stacked glyphs and between years by dragging horizontal and vertical
gap handles. To create bands between the glyphs, we invoke the “Link”
options, select a “Band” link style, group by OperatingSystem, and
click “Create Links.”

To add the text labels, we add a text mark to the glyph by dragging
it into the glyph editor, and then we move the text anchor to the middle
left of the rectangle and move the text to the left side of the anchor. We
then drag the OperatingSystem to the Color attribute of the text to
make it consistent with the rectangle fill color, and we also drag it to
the text dropzone so it is obvious which operating system the glyph
refers to. To show the text marks for the first year only (i.e., 2009),
we toggle the “Conditioned by” options for the text marks’ “Visibility”
attribute. From this menu, we select the Year column, clear the default
selection, and select 2009 only. Finally, we adjust the left margin of the
chart by dragging the guide and then type the chart title.

3.3.3 Scenario 2: Reproducing the Rose Chart

We will reproduce Florence Nightingale’s Rose Chart, one depicting
the monthly death toll and causes of death by disease, wounds, and
other causes among the Army of the East during the Crimean War in
1855. In this chart (Fig. 2-i), each wedge of the circle corresponds to a
month, with the three causes of death stacked radially and the area of
each being proportional to the number of deaths.

We start by dragging a rectangle mark into the glyph editor. We drag
the Death column to its Height attribute and the Type column to its
Fill attribute. To convert Cartesian coordinates to Polar coordinates,
we drag the circle scaffold from the toolbar into the chart canvas. This
converts the chart into a circular layout of rectangles tangential to the
circle. We then drag the Month column to the angular axis.

Selecting the plot segment, we toggle a radial stacking sub-layout.
We reduce the inner radius of the plot segment by dragging the inner
circle to the center (a radius of 0). To bind data (the number of deaths)
to the area, we check the “Height to Area” checkbox. To remove
angular separation between the wedges, we set the angular gap to 0%,
but we give each a white stroke in the rectangle’s attributes panel. Next,
we select the rectangle mark to assign a custom palette of colors to the
causes of death, and we toggle a legend. Finally, we adjust the chart
margins, anchor the legend to left guide, and edit the chart title.

Since this is a chart layout that we would like to reuse, we export
it as a Power BI custom visual [50]. We open the File panel, toggle
the Export tab, and select “Power BI Custom Visual.” In the following
panel, we replace the data column names with more generic data slot
names: Month, Type, and Death are replaced by “Angular Axis,” “Cat-
egory,” and “Area,” respectively. We name this template “Rose Chart”
and click the “Export” button. Finally, we import the resulting “.pbiviz”
file in Power BI and use it to visualize other data (e.g., Fig. 8).

3.4 Constraint-based Layout

At the system level, partial layout specifications are not independent
of one another. For example, binding data to the width of a rectangle
and stacking all rectangles horizontally to a total width are two inter-
dependent partial specifications: the scaling parameter of the width
binding depends on the total width of the stacking layout. To support
the combination of partial layout specifications, we express partial
specifications as mathematical constraints and employ a constraint
solver to determine the final layout.

3.4.1 Constraints at Multiple Levels

Since there are chart-level elements, glyph-level elements, and scales
to be considered, Charticulator generates constraints at multiple levels.

Chart-level constraints specify how plot segments, legends, chart-
level marks, and guides are related to one another. For example, a
constraint that legend A should be on the right of the plot segment B
translates to B.x2 = A.x1 mathematically. Guides and guide coordina-
tors can be used at this level to position elements.

Each plot segment has constraints specifying how its glyphs are
positioned, and these constraints depend on the plot segment’s scaffolds.
For example, a single horizontal scaffold enforces the glyphs to be
horizontally adjacent to one another (with an optional gap):

∀G1,G2 : Glyph∧ adjacent(G1,G2),G1.x2 +gap = G2.x1

Gfirst.x1 = PlotSegment.x1

Glast.x2 = PlotSegment.x2

The two preceding statements are boundary conditions, while the
following vertically aligns glyphs by their anchors:

∀G : Glyph,G.anchor.y = y

Glyph-level constraints are similar to chart-level constraints except
that their scopes are individual glyphs. Guides, guide coordinators, and
data-driven guides [15] can be used at this level.

A mark or chart element can have intrinsic relationships among its
attributes. For example, consider the attributes of a rectangle mark: x1,
x2, xcenter, and width. Increasing x2 will also increase width and xcenter.
Intrinsic constraints enforce these relations. In this example they are:

x1 + x2 = 2× xcenter

x2− x1 = width

Intrinsic constraints allow us to expose multiple related attributes
simultaneously and maintain the consistency of partial specifications.
Chart authors do not have to fully specify all of the attributes. In the
above example, they can specify any two of the four attributes, and the
constraint solver computes the remaining attributes.

3.4.2 Data Binding Constraints

Constraints are also involved in the data binding process when layout
attributes are bound to data. For example, when a data dimension is
bound to the width of a glyph, the scale constraint will be:

∀i,Gi.width = Scale. f actor×di

Assuming a horizontal layout which enforces the rectangles to be
adjacent to each other, we will have the following constraints:

∀i,Gi.width = Scale. f actor×di

∀i,Gi.x2−Gi.x1 = Gi.width
∀ j = i+1,Gi.x2 +gap = G j.x1

G1.x1 = PlotSegment.x1

GN .x2 = PlotSegment.x2

The first statement is the scale constraint, the second statement is
the glyph’s intrinsic constraint, and the third to fifth statements refer to
the plot segment’s layout constraint. Together, the constraint solver can
determine the correct scale factor:

Scale. f actor =
PlotSegment.x2−PlotSegment.x1− (N−1)gap

∑i di

Fig. 8. Charticulator allows the chart creator to export chart layouts as reusable templates in the form of custom visuals for Microsoft Power BI, which
can be imported into Power BI’s web or desktop client to visualize new data.

For the sake of simplicity, we are assuming that the plot segment’s
attributes are given. In Charticulator, these attributes are subject to
chart-level constraints: plot segments can be snapped to other chart-
level elements, such as plot segments and guides.

3.4.3 Two-stage Constraint Solving
The mathematical constraint solver we are using is a linear solver, which
is fast and has guaranteed convergence. However, many possible charts,
such as those incorporating a packing layout or a force-directed layout,
can only be expressed via nonlinear constraints. Charticulator therefore
incorporates a two-stage constraint solving mechanism. In the first
stage, Charticulator invokes the linear constraint solver to determine
the layout of the chart elements and a basic binding for stacking-based
layouts, which can be expressed via linear constraints. The first stage
can generate additional variables that can be used in the second stage.
Then, Charticulator invokes additional layout algorithms (e.g., circle
packing) to address nonlinear layouts.

3.5 Reusable Chart Templates
A notable strength of Charticulator is that the chart design is not tightly
coupled with the input data because automatic layout computation
allows the chart to adapt to new data as long as the types of data
columns are the same. This makes it possible to export the chart
design as a template to be used in other charting systems. Charticulator
extracts a list of data mapping slots (e.g., “X-Axis,” “Group By”) and
properties (e.g., “Chart Title”) from the chart specification, and allows
the chart creator to choose names for the slots and properties (e.g.,
Fig. 8-left). Once the custom names are specified, Charticulator bundles
the named list with the chart specification and essential Charticulator
components including the constraint solver and the chart renderer into a
single JavaScript package. This package provides an API to render the
chart design with given data columns and properties. For each target
visualization tool, we implement an adapter that exposes the API in the
format required by the visualization tool. For example, to export as a
Microsoft Power BI custom visual, we produce a “.pbiviz” file with
appropriate metadata (Power BI refers to these as “capabilities”) and
glue code. The metadata tells Power BI what the input data should be
like, and the glue code takes the input data from Power BI and produces
the chart using the exported JavaScript package.

3.6 Implementation
Charticulator is implemented as an HTML5 application and uses tech-
nologies including TypeScript [55], React [54], and WebAssembly [56].
It follows the basic Flux application architecture [47], with the addition
of a constraint solver. The application maintains a chart specification
and a chart state. The chart specification describes the chart in a JSON
object that mirrors the framework discussed in Section 3.2. The chart
state stores all of chart elements’ attributes. Together, they form the
“Store” part of the Flux architecture. For each chart editing interaction,

an “Action” is emitted and dispatched through the global “Dispatcher”
to the “Store.” The store then modifies the chart specification and
invokes the constraint solver component to update the chart state. Once
the state is successfully updated, the “Store” emits an update event
which causes the user interface components to update.

Many algorithms in the literature solve linear constraints. Notably,
the Cassowary algorithm [2] extends the simplex method to allow for
prioritizing constraints, and the Conjugate Gradient algorithm [33] is
very efficient for solving sparse linear systems. We experimented with
both algorithms and settled on a sparse least-squares conjugate gradient
algorithm. We selected a sparse solver because most layout constraints
involve only a few variables and thus produce a very sparse matrix;
we use the least squares minimization technique to deal with weighted
constraints, if any. However, this algorithm only supports equality
constraints, and thus Charticulator only allows for the specification of
such constraints.

More details about implementation as well as algorithm benchmarks
can be found in the supplemental material.

4 EVALUATION

We evaluate Charticulator in three forms: (1) a gallery to demonstrate
its expressiveness; (2) a user study to assess its usability; and (3) a
click-count comparison with three existing chart creation tools.

4.1 Gallery
To demonstrate the expressive power of Charticulator, we produced a
variety of charts with a diverse collection of datasets; Fig. 2 shows 12
examples from our gallery. Many of these charts are reproductions or
variations of charts created by news graphics teams. The full gallery
can be found in the website, along with high-resolution images, detailed
descriptions, and videos illustrating the creation processes.

4.2 User Study: Chart Reproduction
To determine if people can produce bespoke charts with Charticulator,
we followed a procedure similar to those used to evaluate Data Illustra-
tor [16] and ChartAccent [26], which focuses on chart reproduction.

4.2.1 Study Design
We recruited 11 participants (5 female) who had normal or corrected-
to-normal vision from the Puget Sound area. All participants had at
least three years of experience using graphics editors such as Adobe
Illustrator, Adobe Experience Design, Sketch, and Inkscape. They also
had created infographics and used spreadsheets (e.g., Microsoft Excel,
Google sheets, Apple Numbers) within the past three months. In addi-
tion to five designers, we had participants with six other occupations:
a print operator, an architect, a digital marketing manager, an editor,
a sales & marketing professional, and a major gift officer. Their ages
ranged from 22 to 48, with an average age of 33. We compensated
them with a $150 eBay gift card.

We prepared four chart reproduction tasks, covering the basic con-
cepts of Charticulator. Each subsequent task increased in terms of
complexity. Task 1’s chart depicts monthly activity by intensity in a
stacked radial layout (similar to Nightingale’s rose chart) using the
activity tracking data. Task 2’s chart (Fig. 2-k) depicts the 200 types of
mushrooms grouped by odor and surface quality, using a circle packing
sub-layout. Task 3’s chart depicts the co-occurrence of characters in
Les Misérables using a radial layout similar to the chart in Fig. 1. Task
4’s chart (Fig. 2-l) is described in Section 3.3.2. Videos illustrating the
step-by-step construction of these charts are provided on the website.
We also prepared six additional charts, three for a tutorial and three for
practice tasks.

We used a 3.47 GHz Windows 10 desktop machine with 12 GB
RAM, using two side-by-side 24-inch LCD displays running at 1920×
1200 resolution. For each task, we showed the target chart image on
the left monitor, and asked participants to reproduce the same chart in
Charticulator on the right monitor. We logged participants’ interactions
with Charticulator and recorded chart images at each construction step.
We also captured screen recordings along with concurrent video and
audio recordings of the participants as they proceeded.

After providing a brief explanation of the study goals and procedure,
we asked participants to complete a pre-study background question-
naire. We then provided a tutorial on the basic features of Charticulator
using three charts. After completing three practice tasks to familiarize
themselves with Charticulator, participants performed the four tasks
described above on their own. Before starting each task, we described
the target chart and the underlying dataset. When they are ready, par-
ticipants pressed a “Start Task” button to load the dataset and begin
the task. After completing the task, they pressed a “Complete Task”
button. We encouraged participants to think aloud, especially when
any aspect of the task was unclear, or if they were unsure of how to
use Charticulator’s features. We provided hints to participants when
they asked for help or when their progress stalled, noting the cause in
such cases. At the end of the study session, participants filled out a
questionnaire about their experience with Charticulator. On average,
the training (tutorial + practice) lasted about 50 minutes, and the entire
session lasted about 80 minutes.

4.2.2 Results

Ten out of 11 participants successfully reproduced the target charts for
all four tasks with only a few hints, and six participants successfully
completed all tasks without any hints. The one remaining participant
(P3) completed the first three tasks, but had trouble understanding that,
in Task 4, the bars were ordered by the share values in each year.

We conducted two pilot sessions before this study, and in doing so we
identified three usability issues: (1) text manipulation (i.e., alignment
and rotation), (2) conditional visibility (of text), and (3) legend creation.
To address these issues, we incorporated direct manipulation for the
text mark and revised the attributes panel. Our results indicated that
we fully addressed the first two issues. None of the participants had
trouble manipulating text marks. All participants managed to control
the visibility of text marks. However, two participants still forgot how
to add a legend. Considering a legend as a property of the chart itself,
they tried to look for a button to add a legend at the chart level. P9,
who forgot how to add a legend during the practice session, mentioned
that “I’m still thinking in a regular [Microsoft] Excel format.”

With regards to task completion time, the average task completion
time was less than four minutes, ranging from 130 to 235 seconds
(Fig. 9). Note that we did not explicitly ask the participants to complete
the task as quickly as possible. When rating Charticulator on three
satisfaction criteria using a 7-point Likert scale (1: “Strongly Disagree”
to 7: “Strongly Agree”), participants indicated that Charticulator is
easy to learn (Avg = 6.55) and that it was easy (6.27) and enjoyable
(6.73) to create charts with it. Participants appreciated various aspects
of Charticulator. Seven participants mentioned that the drag-and-drop
interaction was what they liked most. Participants also appreciated the
immediate visual feedback, its power and flexibility, its similarity to
Adobe InDesign, and its easy access to the underlying data.

0 50 100 150 200 250 300

235

161

130

169

Task4

Task3

Task2

Task1

Fig. 9. Task completion time in seconds. Error bars represent the
standard deviations. (This chart is created with Charticulator.)

4.3 Comparison to Existing Tools

We also sought a way to compare Charticulator with three existing chart
creation tools: Data Illustrator [16], Lyra [30], and iVisDesigner [27].
While a comparative user study would have been ideal, these tools dif-
fer in terms of conceptual framework, feature set (e.g., z-ordering, un-
do/redo), the availability of tutorials, low-level interface design choices,
and the stability of their implementation. We thus decided to compare
the number of user interactions as a proxy assessment of their respec-
tive complexities, inspired by the keystroke-level model [9] approach.
However, we concede that a fewer number of interactions does not
necessarily mean that a tool is easier to learn to use the tool.

We proceeded to generate seven charts (Table 1) with each of the
aforementioned tools. We selected charts that are representative of a
variety of designs and layouts, those that can be created with other
tools. We considered the chart creation to be successful if it was
possible to realize the chart design with reasonable fidelity, focusing on
the correctness of the data binding, layout, and linking because exact
chart size, legend, label positioning, and colors can vary given a tool’s
available features. In addition, we did not count repetitive interactions
to fine-tune a design (e.g., trying out different colors or gap sizes), and
assumed that one such interaction yielded the desired result.

We report the number of clicks, drag-and-drops, and text inputs
separately (Table 1). Double-clicks count as two clicks; one text input
interaction includes a click to activate the textbox. The actual counts
may vary depending on the exact order of creation. We again note that
these numbers should only be treated as a general impression of the
complexity of interaction. Based on this comparison, we found that
Charticulator has a comparable complexity to other tools in terms of
the number of low-level interactions.

5 DISCUSSION AND FUTURE WORK

5.1 Limitations

Framework. Charticulator currently cannot create three charts from
Data Illustrator’s gallery. While some of the limitations can be ad-
dressed by simply implementing more features (e.g., adding a triangle
mark type), other limitations are inherent to the framework design. The
most notable limitation is that Charticulator supports only one level
of repetition in plot segments, and thus the data granularity must be
predetermined by the chart creator. In contrast, the desired granular-
ity can be achieved by multiple repetition and partition operations in
Data Illustrator’s framework. To address this limitation, we would like
to extend our framework in two ways. First, a data transformation
pipeline can be added to the plot segment level; by specifying a set
of data transformations, the chart creator will be able to aggregate the
data to a desired granularity. Second, and more importantly, we can
allow a glyph design to be a nested chart (e.g., Fig. 2-e can be seen as a
scatterplot of bar chart glyphs): this can be done recursively to support
multiple levels of granularity.
Scalability. The main drawback of incorporating a constraint solving
algorithm is speed (and thus scalability), as most of the constraint
solvers have O(n2) time complexity. For example, positioning a few
hundred glyphs with chaining constraints (e.g., stacking them horizon-
tally with varying widths) may take 1–2 seconds to complete. We have
improved the solving speed around 1.5–2× by using WebAssembly [56]
and running the solver in a background worker to avoid blocking the

Charticulator Data Illustrator [16] Lyra [30] iVisDesigner [27]

Chart CL DD TI CL DD TI CL DD TI CL DD TI

Nightingale chart (Fig. 2-i) 31 13 2 Not supported 24 16 7 Not supported
Color-coded matrix a (Fig. 2-b) 15 13 2 20 5 2 11 12 2 27 1 2

Parallel coordinates b (Fig. 2-h) 18 10 5 20 5 1 29 9 9 26 0 5

Red and Blue America [17] 20 8 2 43 9 1 14 9 2 c 57 4 4

Ranking of CO2 Emissions (Fig. 2-c) 29 6 3 44 3 2 45 11 3 60 0 11

Caltrain’s schedule d (Fig. 2-g) 13 8 4 39 9 2 22 16 5 47 1 4

Best bookshelf (Fig. 2-j) 26 11 2 50 8 1 e 36 19 7 e Not supported

Table 1. Number of clicks (CL), drag-and-drops (DD), and text inputs (TI) to create each chart using Charticulator and three existing tools. Notes: (a)
While the original chart has a multi-stop custom gradient, we opted to use a two-stop gradient for the sake of simplicity; (b) Axis labels are omitted
and circles are optional; (c) We were unable to add state name text labels, but this appears to be a bug and not a shortcoming of the tool; (d) The Y
axis represents the distance between the stations; and (e) We were unable to determine how to add the stars to indicate bestsellers. Lyra supports
connectors, but it does not work as desired with a stacked layout.

user interface. In the future, we will investigate ways to further improve
the performance of the constraint solving algorithm, for example, by
using a preconditioner such as incomplete Cholesky factorization [1]
in the conjugate gradient algorithm to address chaining constraints.
User Study. In our reproduction study, we intended to assess if people
could produce chart layouts using Charticulator when provided with
a reference chart, data, and about an hour of training. However, just
as it is difficult to ascertain if a particular text editor will result in
highly expressive prose, we cannot conclusively determine if the use
of Charticulator will result in the production of expressive and novel
charts. We invested a significant amount of time and effort to design
bespoke charts for our gallery and for our reproduction study, and thus it
would be logistically difficult to study the design of truly bespoke chart
layouts in 60–90 minute laboratory study sessions. In the future, we
plan to evaluate the expressiveness of Charticulator with chart creators
in a workshop or hackathon setting. To promote engagement with the
tool, we will ask participants to bring their own data. We also intend
to conduct a long-term evaluation through engagement with students
taking a data journalism course taught by our academic collaborators.

5.2 Manual Manipulation vs. Layout Specification

People familiar with vector graphics editing tools such as Adobe Illus-
trator are familiar with the “everything is manipulable” idea and have
come to expect that objects will respond to direct manipulation. In a
constraint-based layout approach, this may not always be feasible be-
cause constraints are inherently interconnected, and chart creators can
try to set conflicting constraints. To alleviate this issue, Charticulator
controlled the complexity of constraints that can be specified, in an
attempt to minimize the level of unexpectedness. It would be important
to investigate ways to provide appropriate feedback to chart creators
when their desired layout is not possible due to conflicting constraints.

Visualization design generally involves specifying a large number
of attributes. For example, a rectangle mark has width, height, color,
stroke, opacity, and visibility. Furthermore, people tend to iteratively
design elements and revisit earlier design choices. Even though our
study participants were familiar with graphics editing tools, some par-
ticipants were overwhelmed by the many options Charticulator offered.
For example, P8 stated that “It was sometimes difficult determining
what I needed to click to reveal other properties/options.” In several
occasions, knowing that they needed to apply a packing sub-layout,
participants tried to remember where the option for the sub-layout was.
Thus, an important direction for future research would involve envi-
sioning new forms of interactive tutorials to facilitate the self-teaching
of highly configurable user interfaces such as Charticulator’s.

5.3 Additional Expressivity

Charticulator currently includes only four basic mark types. We can
support more complex glyph designs beyond the composition of rect-
angles, symbols, lines, and text. For instance, incorporating the “Pen”
tool from Adobe Illustrator would allow chart creators to draw arbi-
trary polylines or curves. The control points of these elements can
be anchored on other marks or positioned by data-driven guides [15].

Similarly, it would be useful to investigate the use of pen and touch
interactions to create custom marks such as in DataInk [41]. In addi-
tion, we can further enhance the expressive power of Charticulator by
incorporating the annotation capabilities of ChartAccent [26], which
provides a rich palette of data-driven annotation options.

Charticulator primarily deals with layouts of glyphs. Links are con-
nected to glyphs by user-specified anchors, and no further layout of
links is supported. In the future, we will investigate how to interactively
specify the layout of links by incorporating edge bundling (e.g., hierar-
chical edge bundling [14]) and routing techniques (e.g., force-directed
edge routing [11]), which may involve the insertion of magnetic el-
ements that interact with a force-directed edge routing algorithm to
aid the interactive placement of links. Besides, we can further extend
Charticulator’s expressive range by supporting additional specialized
layout algorithms (e.g., treemap and force-directed graph layout).

As demonstrated in Fig. 8, Charticulator can export charts as reusable
templates. Our ultimate goal is to allow Charticulator to import these
templates and use them as glyph-level elements that can be bound
to data. This will facilitate the creation of faceted charts and small
multiples. For example, we can import a line chart of monthly market
share values and display it at multiple geographical locations.

5.4 Deployment: Reaching a Worldwide User Community
Microsoft Power BI is an established business intelligence tool with
a large worldwide user community, which includes a marketplace for
sharing custom visuals. We are presently collaborating with Power BI
to deploy Charticulator as a publicly available custom visual designer.
In conjunction with this deployment, they also intend to host user
community events such as a custom visual design competition. We
are excited about the opportunity to reach Power BI’s user community,
which will help us better understand how people use Charticulator with
their own data.

6 CONCLUSION

In this paper, we presented Charticulator, an authoring tool for spec-
ifying bespoke and reusable chart layouts. Unlike other interactive
charting tools, Charticulator prioritizes the configuration of layout be-
tween marks or glyphs, and leverages a constraint solver to achieve
a wide variety of chart designs. We explained the design principles
behind Charticulator’s framework, which generalizes to the creation of
a wide range of charts. We described how Charticulator transfers the
chart specification into layout constraints and incorporates a constraint-
based layout algorithm, which enables the export of chart designs as
reusable chart templates. We also illustrated how its user interface
enables interactive chart layout specification. We demonstrated the ex-
pressive potential of Charticulator through a gallery of charts, assessed
its usability via a chart reproduction study, and counted the number
of interactions required to create charts, comparing against three exist-
ing tools. Finally, we discussed several ways to further evaluate and
enhance the expressive power of Charticulator.

Charticulator is available at https://charticulator.com. The
source code is released under an MIT open source license at https:
//github.com/Microsoft/charticulator.

https://charticulator.com
https://github.com/Microsoft/charticulator
https://github.com/Microsoft/charticulator

REFERENCES

[1] O. Axelsson. Iterative solution methods. Cambridge University Press,
1996.

[2] G. J. Badros, A. Borning, and P. J. Stuckey. The Cassowary linear arith-
metic constraint solving algorithm. ACM Transactions on Computer-
Human Interaction (TOCHI), 8(4):267–306, 2001. doi: 10.1145/504704.
504705

[3] A. Bigelow, S. Drucker, D. Fisher, and M. Meyer. Iterating between tools
to create and edit visualizations. IEEE Transactions on Visualization and
Computer Graphics (Proceedings of InfoVis), 23(1):481–490, 2017. doi:
10.1109/TVCG.2016.2598609

[4] M. A. Borkin, Z. Bylinskii, N. W. Kim, C. M. Bainbridge, C. S. Yeh,
D. Borkin, H. Pfister, and A. Oliva. Beyond memorability: Visualization
recognition and recall. IEEE Transactions on Visualization and Computer
Graphics (Proceedings of InfoVis), 22(1):519–528, 2016. doi: 10.1109/TVCG
.2015.2467732

[5] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization.
IEEE Transactions on Visualization and Computer Graphics (Proceedings
of InfoVis), 15(6):1121–1128, 2009. doi: 10.1109/TVCG.2009.174

[6] M. Bostock, V. Ogievetsky, and J. Heer. D3: Data-driven documents.
IEEE Transactions on Visualization and Computer Graphics (Proceedings
of InfoVis), 17(12):2301–2309, 2011. doi: 10.1109/TVCG.2011.185

[7] J. Brosz, M. A. Nacenta, R. Pusch, S. Carpendale, and C. Hurter. Trans-
mogrification: Causal manipulation of visualizations. In Proceedings of
the ACM Symposium on User Interface Software and Technology (UIST),
pp. 97–106, 2013. doi: 10.1145/2501988.2502046

[8] A. Cairo. The Functional Art: An Introduction to Information Graphics
and Visualization. New Riders, 2012.

[9] S. K. Card, T. P. Moran, and A. Newell. The keystroke-level model for
user performance time with interactive systems. Communications of the
ACM, 23(7):396–410, 1980. doi: 10.1145/358886.358895

[10] I. F. Cruz and P. S. Leveille. Implementation of a constraint-based vi-
sualization system. In Proceedings of the IEEE Symposium on Visual
Languages, pp. 13–20, 2000. doi: 10.1109/VL.2000.874345

[11] T. Dwyer, K. Marriott, and M. Wybrow. Integrating edge routing into
force-directed layout. In International Symposium on Graph Drawing, pp.
8–19, 2006. doi: 10.1007/978-3-540-70904-6 3

[12] J. Fogarty and S. E. Hudson. GADGET: A toolkit for optimization-based
approaches to interface and display generation. In Proceedings of the
ACM Symposium on User Interface Software and Technology (UIST), pp.
125–134, 2003. doi: 10.1145/964696.964710

[13] L. Grammel, C. Bennett, M. Tory, and M.-A. Storey. A survey of vi-
sualization construction user interfaces. In Short Paper Proceedings of
EuroVis, 2013. doi: 10.2312/PE.EuroVisShort.EuroVisShort2013.019-023

[14] D. Holten. Hierarchical edge bundles: Visualization of adjacency relations
in hierarchical data. IEEE Transactions on Visualization and Computer
Graphics (Proceedings of InfoVis), 12(5):741–748, 2006. doi: 10.1109/TVCG
.2006.147

[15] N. W. Kim, E. Schweickart, Z. Liu, M. Dontcheva, W. Li, J. Popovic,
and H. Pfister. Data-driven guides: Supporting expressive design for
information graphics. IEEE Transactions on Visualization and Computer
Graphics (Proceedings of InfoVis), 23(1):491–500, 2017. doi: 10.1109/TVCG
.2016.2598620

[16] Z. Liu, J. Thompson, A. Wilson, M. Dontcheva, J. Delorey, S. Grigg,
B. Kerr, and J. Stasko. Data Illustrator: Augmenting vector design tools
with lazy data binding for expressive visualization authoring. In Proceed-
ings of the ACM Conference on Human Factors in Computing Systems
(CHI), pp. 123:1–123:13, 2018. doi: 10.1145/3173574.3173697

[17] Z. Liu, J. Thompson, A. Wilson, M. Dontcheva, J. Delorey, S. Grigg,
B. Kerr, and J. Stasko. Data Illustrator: Gallery, 2018. http://
data-illustrator.com/gallery.php.

[18] E.-J. Marey. La méthode graphique dans les sciences expérimentales et
principalement en physiologie et en médecine. G. Masson, 1878.

[19] M. Mauri, T. Elli, G. Caviglia, G. Uboldi, and M. Azzi. RAWGraphs:
A visualisation platform to create open outputs. In Proceedings of the
ACM Italian CHI Conference, pp. 28:1–28:5, 2017. doi: 10.1145/3125571.
3125585

[20] H. Mei, W. Chen, Y. Ma, H. Guan, and W. Hu. Viscomposer: A visual
programmable composition environment for information visualization.
Visual Informatics, 2(1):71–81, 2018. doi: 10.1016/j.visinf.2018.04.008

[21] H. Mei, Y. Ma, Y. Wei, and W. Chen. The design space of construction
tools for information visualization: A survey. Journal of Visual Languages

& Computing, 2017. doi: 10.1016/j.jvlc.2017.10.001
[22] G. G. Méndez, M. A. Nacenta, and S. Vandenheste. iVoLVER: Interac-

tive visual language for visualization extraction and reconstruction. In
Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI), pp. 4073–4085, 2016. doi: 10.1145/2858036.2858435

[23] R. Metoyer, B. Lee, N. Henry Riche, and M. Czerwinski. Understanding
the verbal language and structure of end-user descriptions of data visu-
alizations. In Proceedings of the ACM Conference on Human Factors
in Computing Systems (CHI), pp. 1659–1662, 2012. doi: 10.1145/2207676.
2208292

[24] J. Moloney, A. Borning, and B. Freeman-Benson. Constraint technology
for user-interface construction in ThingLab II. ACM SIGPLAN Notices,
24(10), 1989. doi: 10.1145/74878.74917

[25] C. Reas and B. Fry. Processing: Programming for the media arts. AI &
Society, 20(4):526–538, 2006.

[26] D. Ren, M. Brehmer, B. Lee, T. Höllerer, and E. K. Choe. ChartAccent:
Annotation for data-driven storytelling. In Proceedings of the IEEE Pacific
Visualization Symposium (PacificVis), pp. 230–239, 2017. doi: 10.1109/
PACIFICVIS.2017.8031599

[27] D. Ren, T. Höllerer, and X. Yuan. iVisDesigner: Expressive interactive
design of information visualizations. IEEE Transactions on Visualization
and Computer Graphics (Proceedings of InfoVis), 20(12):2092–2101,
2014. doi: 10.1109/TVCG.2014.2346291

[28] L. C. Rost. What I learned recreating one chart using 24 tools. Source,
2016. https://goo.gl/uGE5dc.

[29] K. Ryall, J. Marks, and S. Shieber. An interactive constraint-based system
for drawing graphs. In Proceedings of the ACM Symposium on User
Interface Software and Technology (UIST), pp. 97–104, 1997. doi: 10.
1145/263407.263521

[30] A. Satyanarayan and J. Heer. Lyra: An interactive visualization design
environment. Computer Graphics Forum (Proceedings of EuroVis), 33(3),
2014. doi: 10.1111/cgf.12391

[31] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite:
A grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics (Proceedings of InfoVis), 23(1):341–350, 2017.
doi: 10.1109/TVCG.2016.2599030

[32] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive Vega: A
streaming dataflow architecture for declarative interactive visualization.
IEEE Transactions on Visualization and Computer Graphics (Proceedings
of InfoVis), 22(1):659–668, 2016. doi: 10.1109/TVCG.2015.2467091

[33] J. R. Shewchuk. An introduction to the conjugate gradient method with-
out the agonizing pain. Technical report, Carnegie Mellon University,
Pittsburgh, PA, USA, 1994.

[34] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis,
and visualization of multidimensional relational databases. IEEE Transac-
tions on Visualization and Computer Graphics, 8(1):52–65, 2002. doi: 10.
1109/2945.981851

[35] S. Takahashi, S. Matsuoka, K. Miyashita, H. Hosobe, and T. Kamada. A
constraint-based approach for visualization and animation. Constraints,
3(1):61–86, 1998. doi: 10.1023/A:1009708715411

[36] Y. Wang, H. Zhang, H. Huang, X. Chen, Q. Yin, Z. Hou, D. Zhang,
Q. Luo, and H. Qu. InfoNice: Easy creation of information graphics. In
Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI), pp. 335:1–335:12, 2018. doi: 10.1145/3173574.3173909

[37] H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer,
2009.

[38] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and
J. Heer. Voyager: Exploratory analysis via faceted browsing of visualiza-
tion recommendations. IEEE Transactions on Visualization and Computer
Graphics (Proceedings of InfoVis), 22(1):649–658, 2016. doi: 10.1109/TVCG
.2015.2467191

[39] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand,
J. Mackinlay, B. Howe, and J. Heer. Voyager 2: Augmenting visual
analysis with partial view specifications. In Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI), pp. 2648–
2659, 2017. doi: 10.1145/3025453.3025768

[40] H. Xia, B. Araujo, T. Grossman, and D. Wigdor. Object-oriented drawing.
In Proceedings of the 2016 CHI Conference on Human Factors in Com-
puting Systems, pp. 4610–4621. ACM, New York, NY, USA, 2016. doi:
10.1145/2858036.2858075

[41] H. Xia, N. Riche, F. Chevalier, B. D. Araujo, and D. Wigdor. DataInk:
Enabling direct and creative data-oriented drawing. In Proceedings of
the ACM Conference on Human Factors in Computing Systems (CHI), pp.

http://dx.doi.org/10.1145/504704.504705
http://dx.doi.org/10.1145/504704.504705
http://dx.doi.org/10.1145/504704.504705
http://dx.doi.org/10.1145/504704.504705
http://dx.doi.org/10.1145/504704.504705
http://dx.doi.org/10.1145/504704.504705
http://dx.doi.org/10.1145/504704.504705
https://dx.doi.org/10.1145/504704.504705
https://dx.doi.org/10.1145/504704.504705
http://dx.doi.org/10.1109/TVCG.2016.2598609
http://dx.doi.org/10.1109/TVCG.2016.2598609
http://dx.doi.org/10.1109/TVCG.2016.2598609
http://dx.doi.org/10.1109/TVCG.2016.2598609
http://dx.doi.org/10.1109/TVCG.2016.2598609
http://dx.doi.org/10.1109/TVCG.2016.2598609
http://dx.doi.org/10.1109/TVCG.2016.2598609
https://dx.doi.org/10.1109/TVCG.2016.2598609
https://dx.doi.org/10.1109/TVCG.2016.2598609
http://dx.doi.org/10.1109/TVCG.2015.2467732
http://dx.doi.org/10.1109/TVCG.2015.2467732
http://dx.doi.org/10.1109/TVCG.2015.2467732
http://dx.doi.org/10.1109/TVCG.2015.2467732
http://dx.doi.org/10.1109/TVCG.2015.2467732
http://dx.doi.org/10.1109/TVCG.2015.2467732
http://dx.doi.org/10.1109/TVCG.2015.2467732
http://dx.doi.org/10.1109/TVCG.2015.2467732
https://dx.doi.org/10.1109/TVCG.2015.2467732
https://dx.doi.org/10.1109/TVCG.2015.2467732
http://dx.doi.org/10.1109/TVCG.2009.174
http://dx.doi.org/10.1109/TVCG.2009.174
http://dx.doi.org/10.1109/TVCG.2009.174
http://dx.doi.org/10.1109/TVCG.2009.174
http://dx.doi.org/10.1109/TVCG.2009.174
http://dx.doi.org/10.1109/TVCG.2009.174
https://dx.doi.org/10.1109/TVCG.2009.174
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1109/TVCG.2011.185
https://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1145/2501988.2502046
http://dx.doi.org/10.1145/2501988.2502046
http://dx.doi.org/10.1145/2501988.2502046
http://dx.doi.org/10.1145/2501988.2502046
http://dx.doi.org/10.1145/2501988.2502046
http://dx.doi.org/10.1145/2501988.2502046
http://dx.doi.org/10.1145/2501988.2502046
https://dx.doi.org/10.1145/2501988.2502046
http://dx.doi.org/10.1145/358886.358895
http://dx.doi.org/10.1145/358886.358895
http://dx.doi.org/10.1145/358886.358895
http://dx.doi.org/10.1145/358886.358895
http://dx.doi.org/10.1145/358886.358895
http://dx.doi.org/10.1145/358886.358895
http://dx.doi.org/10.1145/358886.358895
https://dx.doi.org/10.1145/358886.358895
http://dx.doi.org/10.1109/VL.2000.874345
http://dx.doi.org/10.1109/VL.2000.874345
http://dx.doi.org/10.1109/VL.2000.874345
http://dx.doi.org/10.1109/VL.2000.874345
http://dx.doi.org/10.1109/VL.2000.874345
http://dx.doi.org/10.1109/VL.2000.874345
http://dx.doi.org/10.1109/VL.2000.874345
https://dx.doi.org/10.1109/VL.2000.874345
http://dx.doi.org/10.1007/978-3-540-70904-6_3
http://dx.doi.org/10.1007/978-3-540-70904-6_3
http://dx.doi.org/10.1007/978-3-540-70904-6_3
http://dx.doi.org/10.1007/978-3-540-70904-6_3
http://dx.doi.org/10.1007/978-3-540-70904-6_3
http://dx.doi.org/10.1007/978-3-540-70904-6_3
http://dx.doi.org/10.1007/978-3-540-70904-6_3
https://dx.doi.org/10.1007/978-3-540-70904-6_3
http://dx.doi.org/10.1145/964696.964710
http://dx.doi.org/10.1145/964696.964710
http://dx.doi.org/10.1145/964696.964710
http://dx.doi.org/10.1145/964696.964710
http://dx.doi.org/10.1145/964696.964710
http://dx.doi.org/10.1145/964696.964710
http://dx.doi.org/10.1145/964696.964710
http://dx.doi.org/10.1145/964696.964710
https://dx.doi.org/10.1145/964696.964710
http://dx.doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023
http://dx.doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023
http://dx.doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023
http://dx.doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023
http://dx.doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023
http://dx.doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023
https://dx.doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023
http://dx.doi.org/10.1109/TVCG.2006.147
http://dx.doi.org/10.1109/TVCG.2006.147
http://dx.doi.org/10.1109/TVCG.2006.147
http://dx.doi.org/10.1109/TVCG.2006.147
http://dx.doi.org/10.1109/TVCG.2006.147
http://dx.doi.org/10.1109/TVCG.2006.147
http://dx.doi.org/10.1109/TVCG.2006.147
https://dx.doi.org/10.1109/TVCG.2006.147
https://dx.doi.org/10.1109/TVCG.2006.147
http://dx.doi.org/10.1109/TVCG.2016.2598620
http://dx.doi.org/10.1109/TVCG.2016.2598620
http://dx.doi.org/10.1109/TVCG.2016.2598620
http://dx.doi.org/10.1109/TVCG.2016.2598620
http://dx.doi.org/10.1109/TVCG.2016.2598620
http://dx.doi.org/10.1109/TVCG.2016.2598620
http://dx.doi.org/10.1109/TVCG.2016.2598620
http://dx.doi.org/10.1109/TVCG.2016.2598620
https://dx.doi.org/10.1109/TVCG.2016.2598620
https://dx.doi.org/10.1109/TVCG.2016.2598620
http://dx.doi.org/10.1145/3173574.3173697
http://dx.doi.org/10.1145/3173574.3173697
http://dx.doi.org/10.1145/3173574.3173697
http://dx.doi.org/10.1145/3173574.3173697
http://dx.doi.org/10.1145/3173574.3173697
http://dx.doi.org/10.1145/3173574.3173697
http://dx.doi.org/10.1145/3173574.3173697
http://dx.doi.org/10.1145/3173574.3173697
http://dx.doi.org/10.1145/3173574.3173697
https://dx.doi.org/10.1145/3173574.3173697
http://data-illustrator.com/gallery.php
http://data-illustrator.com/gallery.php
http://dx.doi.org/10.1145/3125571.3125585
http://dx.doi.org/10.1145/3125571.3125585
http://dx.doi.org/10.1145/3125571.3125585
http://dx.doi.org/10.1145/3125571.3125585
http://dx.doi.org/10.1145/3125571.3125585
http://dx.doi.org/10.1145/3125571.3125585
http://dx.doi.org/10.1145/3125571.3125585
https://dx.doi.org/10.1145/3125571.3125585
https://dx.doi.org/10.1145/3125571.3125585
http://dx.doi.org/10.1016/j.visinf.2018.04.008
http://dx.doi.org/10.1016/j.visinf.2018.04.008
http://dx.doi.org/10.1016/j.visinf.2018.04.008
http://dx.doi.org/10.1016/j.visinf.2018.04.008
http://dx.doi.org/10.1016/j.visinf.2018.04.008
http://dx.doi.org/10.1016/j.visinf.2018.04.008
https://dx.doi.org/10.1016/j.visinf.2018.04.008
http://dx.doi.org/10.1016/j.jvlc.2017.10.001
http://dx.doi.org/10.1016/j.jvlc.2017.10.001
http://dx.doi.org/10.1016/j.jvlc.2017.10.001
http://dx.doi.org/10.1016/j.jvlc.2017.10.001
http://dx.doi.org/10.1016/j.jvlc.2017.10.001
http://dx.doi.org/10.1016/j.jvlc.2017.10.001
https://dx.doi.org/10.1016/j.jvlc.2017.10.001
http://dx.doi.org/10.1145/2858036.2858435
http://dx.doi.org/10.1145/2858036.2858435
http://dx.doi.org/10.1145/2858036.2858435
http://dx.doi.org/10.1145/2858036.2858435
http://dx.doi.org/10.1145/2858036.2858435
http://dx.doi.org/10.1145/2858036.2858435
http://dx.doi.org/10.1145/2858036.2858435
http://dx.doi.org/10.1145/2858036.2858435
https://dx.doi.org/10.1145/2858036.2858435
http://dx.doi.org/10.1145/2207676.2208292
http://dx.doi.org/10.1145/2207676.2208292
http://dx.doi.org/10.1145/2207676.2208292
http://dx.doi.org/10.1145/2207676.2208292
http://dx.doi.org/10.1145/2207676.2208292
http://dx.doi.org/10.1145/2207676.2208292
http://dx.doi.org/10.1145/2207676.2208292
http://dx.doi.org/10.1145/2207676.2208292
https://dx.doi.org/10.1145/2207676.2208292
https://dx.doi.org/10.1145/2207676.2208292
http://dx.doi.org/10.1145/74878.74917
http://dx.doi.org/10.1145/74878.74917
http://dx.doi.org/10.1145/74878.74917
http://dx.doi.org/10.1145/74878.74917
http://dx.doi.org/10.1145/74878.74917
http://dx.doi.org/10.1145/74878.74917
https://dx.doi.org/10.1145/74878.74917
http://dx.doi.org/10.1109/PACIFICVIS.2017.8031599
http://dx.doi.org/10.1109/PACIFICVIS.2017.8031599
http://dx.doi.org/10.1109/PACIFICVIS.2017.8031599
http://dx.doi.org/10.1109/PACIFICVIS.2017.8031599
http://dx.doi.org/10.1109/PACIFICVIS.2017.8031599
http://dx.doi.org/10.1109/PACIFICVIS.2017.8031599
http://dx.doi.org/10.1109/PACIFICVIS.2017.8031599
https://dx.doi.org/10.1109/PACIFICVIS.2017.8031599
https://dx.doi.org/10.1109/PACIFICVIS.2017.8031599
http://dx.doi.org/10.1109/TVCG.2014.2346291
http://dx.doi.org/10.1109/TVCG.2014.2346291
http://dx.doi.org/10.1109/TVCG.2014.2346291
http://dx.doi.org/10.1109/TVCG.2014.2346291
http://dx.doi.org/10.1109/TVCG.2014.2346291
http://dx.doi.org/10.1109/TVCG.2014.2346291
http://dx.doi.org/10.1109/TVCG.2014.2346291
https://dx.doi.org/10.1109/TVCG.2014.2346291
https://goo.gl/uGE5dc
http://dx.doi.org/10.1145/263407.263521
http://dx.doi.org/10.1145/263407.263521
http://dx.doi.org/10.1145/263407.263521
http://dx.doi.org/10.1145/263407.263521
http://dx.doi.org/10.1145/263407.263521
http://dx.doi.org/10.1145/263407.263521
http://dx.doi.org/10.1145/263407.263521
https://dx.doi.org/10.1145/263407.263521
https://dx.doi.org/10.1145/263407.263521
http://dx.doi.org/10.1111/cgf.12391
http://dx.doi.org/10.1111/cgf.12391
http://dx.doi.org/10.1111/cgf.12391
http://dx.doi.org/10.1111/cgf.12391
http://dx.doi.org/10.1111/cgf.12391
http://dx.doi.org/10.1111/cgf.12391
https://dx.doi.org/10.1111/cgf.12391
http://dx.doi.org/10.1109/TVCG.2016.2599030
http://dx.doi.org/10.1109/TVCG.2016.2599030
http://dx.doi.org/10.1109/TVCG.2016.2599030
http://dx.doi.org/10.1109/TVCG.2016.2599030
http://dx.doi.org/10.1109/TVCG.2016.2599030
http://dx.doi.org/10.1109/TVCG.2016.2599030
http://dx.doi.org/10.1109/TVCG.2016.2599030
https://dx.doi.org/10.1109/TVCG.2016.2599030
http://dx.doi.org/10.1109/TVCG.2015.2467091
http://dx.doi.org/10.1109/TVCG.2015.2467091
http://dx.doi.org/10.1109/TVCG.2015.2467091
http://dx.doi.org/10.1109/TVCG.2015.2467091
http://dx.doi.org/10.1109/TVCG.2015.2467091
http://dx.doi.org/10.1109/TVCG.2015.2467091
http://dx.doi.org/10.1109/TVCG.2015.2467091
https://dx.doi.org/10.1109/TVCG.2015.2467091
http://dx.doi.org/10.1109/2945.981851
http://dx.doi.org/10.1109/2945.981851
http://dx.doi.org/10.1109/2945.981851
http://dx.doi.org/10.1109/2945.981851
http://dx.doi.org/10.1109/2945.981851
http://dx.doi.org/10.1109/2945.981851
http://dx.doi.org/10.1109/2945.981851
https://dx.doi.org/10.1109/2945.981851
https://dx.doi.org/10.1109/2945.981851
http://dx.doi.org/10.1023/A:1009708715411
http://dx.doi.org/10.1023/A:1009708715411
http://dx.doi.org/10.1023/A:1009708715411
http://dx.doi.org/10.1023/A:1009708715411
http://dx.doi.org/10.1023/A:1009708715411
http://dx.doi.org/10.1023/A:1009708715411
https://dx.doi.org/10.1023/A:1009708715411
http://dx.doi.org/10.1145/3173574.3173909
http://dx.doi.org/10.1145/3173574.3173909
http://dx.doi.org/10.1145/3173574.3173909
http://dx.doi.org/10.1145/3173574.3173909
http://dx.doi.org/10.1145/3173574.3173909
http://dx.doi.org/10.1145/3173574.3173909
http://dx.doi.org/10.1145/3173574.3173909
http://dx.doi.org/10.1145/3173574.3173909
https://dx.doi.org/10.1145/3173574.3173909
http://dx.doi.org/10.1109/TVCG.2015.2467191
http://dx.doi.org/10.1109/TVCG.2015.2467191
http://dx.doi.org/10.1109/TVCG.2015.2467191
http://dx.doi.org/10.1109/TVCG.2015.2467191
http://dx.doi.org/10.1109/TVCG.2015.2467191
http://dx.doi.org/10.1109/TVCG.2015.2467191
http://dx.doi.org/10.1109/TVCG.2015.2467191
http://dx.doi.org/10.1109/TVCG.2015.2467191
https://dx.doi.org/10.1109/TVCG.2015.2467191
https://dx.doi.org/10.1109/TVCG.2015.2467191
http://dx.doi.org/10.1145/3025453.3025768
http://dx.doi.org/10.1145/3025453.3025768
http://dx.doi.org/10.1145/3025453.3025768
http://dx.doi.org/10.1145/3025453.3025768
http://dx.doi.org/10.1145/3025453.3025768
http://dx.doi.org/10.1145/3025453.3025768
http://dx.doi.org/10.1145/3025453.3025768
http://dx.doi.org/10.1145/3025453.3025768
http://dx.doi.org/10.1145/3025453.3025768
https://dx.doi.org/10.1145/3025453.3025768
http://dx.doi.org/10.1145/2858036.2858075
http://dx.doi.org/10.1145/2858036.2858075
http://dx.doi.org/10.1145/2858036.2858075
http://dx.doi.org/10.1145/2858036.2858075
http://dx.doi.org/10.1145/2858036.2858075
http://dx.doi.org/10.1145/2858036.2858075
http://dx.doi.org/10.1145/2858036.2858075
http://dx.doi.org/10.1145/2858036.2858075
https://dx.doi.org/10.1145/2858036.2858075
https://dx.doi.org/10.1145/2858036.2858075
http://dx.doi.org/10.1145/3173574.3173797
http://dx.doi.org/10.1145/3173574.3173797
http://dx.doi.org/10.1145/3173574.3173797
http://dx.doi.org/10.1145/3173574.3173797
http://dx.doi.org/10.1145/3173574.3173797
http://dx.doi.org/10.1145/3173574.3173797

223:1–223:13, 2018. doi: 10.1145/3173574.3173797
[42] Android developers constraint library. https://developer.

android.com/reference/android/support/constraint/

ConstraintLayout.html.
[43] ChartBlocks. https://chartblocks.com.
[44] Datamatic. http://datamatic.io.
[45] Easelly. https://easel.ly.
[46] Flourish. https://flourish.studio.
[47] Flux. https://facebook.github.io/flux/docs/overview.html.
[48] iCharts. https://icharts.net.
[49] Infogram. https://infogram.com.
[50] Microsoft Power BI: Custom visuals. https://powerbi.microsoft.

com/en-us/custom-visuals.
[51] Piktochart. https://piktochart.com.
[52] Plotly. https://plot.ly.
[53] Quadrigram. http://quadrigram.com.
[54] React. https://reactjs.org.
[55] TypeScript. http://typescriptlang.org.
[56] WebAssembly. https://webassembly.org.
[57] Caltrain’s schedule. http://caltrain.com/schedules/

weekdaytimetable.html.
[58] T. DeBold and D. Friedman. Battling infectious diseases in the 20th cen-

tury: the impact of vaccines. The Wall Street Journal. http://graphics.
wsj.com/infectious-diseases-and-vaccines.

[59] T. Herzog, World Greenhouse Gas Emissions: 2005, World
Resources Institute, http://wri.org/resources/charts-graphs/
world-greenhouse-gas-emissions-2005.

[60] T. Kekeritz. Weather Radials: An infographic on heat waves and snow
storms in 35 cities around the globe. http://weather-radials.com.

[61] T. Kim. Best Bookshelf. http://tany.kim/best-bookshelf.
[62] D. Knuth. The Stanford GraphBase: A Platform for Combinato-

rial Computing. https://www-cs-faculty.stanford.edu/˜knuth/
sgb.html.

[63] Millennium Indicators, United Nations Statistics Division. http://mdgs.
un.org/unsd/mdg/SeriesDetail.aspx?srid=749.

[64] National Centers for Environmental Information. https://www.ncdc.
noaa.gov/cdo-web/search?datasetid=GHCND.

[65] F. Nightingale and W. Farr and A. Smith. A contribution to the sanitary
history of the British army during the late war with Russia. John W. Parker
and Son, 1859.

[66] Project Tycho. University of Pittsburgh, www.tycho.pitt.edu.
[67] StatCounter: Mobile operating system market share worldwide. http:

//gs.statcounter.com/os-market-share/mobile/worldwide.
[68] UCI Machine Learning Repository, 2017. http://archive.ics.uci.

edu/ml.

http://dx.doi.org/10.1145/3173574.3173797
http://dx.doi.org/10.1145/3173574.3173797
https://dx.doi.org/10.1145/3173574.3173797
https://developer.android.com/reference/android/support/constraint/ConstraintLayout.html
https://developer.android.com/reference/android/support/constraint/ConstraintLayout.html
https://developer.android.com/reference/android/support/constraint/ConstraintLayout.html
https://chartblocks.com
http://datamatic.io
https://easel.ly
https://flourish.studio
https://facebook.github.io/flux/docs/overview.html
https://icharts.net
https://infogram.com
https://powerbi.microsoft.com/en-us/custom-visuals
https://powerbi.microsoft.com/en-us/custom-visuals
https://piktochart.com
https://plot.ly
http://quadrigram.com
https://reactjs.org
http://typescriptlang.org
https://webassembly.org
http://caltrain.com/schedules/weekdaytimetable.html
http://caltrain.com/schedules/weekdaytimetable.html
http://graphics.wsj.com/infectious-diseases-and-vaccines
http://graphics.wsj.com/infectious-diseases-and-vaccines
http://wri.org/resources/charts-graphs/world-greenhouse-gas-emissions-2005
http://wri.org/resources/charts-graphs/world-greenhouse-gas-emissions-2005
http://weather-radials.com
http://tany.kim/best-bookshelf
https://www-cs-faculty.stanford.edu/~knuth/sgb.html
https://www-cs-faculty.stanford.edu/~knuth/sgb.html
http://mdgs.un.org/unsd/mdg/SeriesDetail.aspx?srid=749
http://mdgs.un.org/unsd/mdg/SeriesDetail.aspx?srid=749
https://www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND
https://www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND
www.tycho.pitt.edu
http://gs.statcounter.com/os-market-share/mobile/worldwide
http://gs.statcounter.com/os-market-share/mobile/worldwide
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Introduction
	Related Work
	Imperative and Declarative Programming
	Template Editing
	Shelf Configuration
	Visual Building
	Constraint-based Authoring

	Charticulator
	Design Principles
	Framework
	Layout Elements
	Layout Composition
	Link Construction

	User Interface and Interaction
	Basic Interaction Mechanisms
	Scenario 1: Mobile Operating System Market Share
	Scenario 2: Reproducing the Rose Chart

	Constraint-based Layout
	Constraints at Multiple Levels
	Data Binding Constraints
	Two-stage Constraint Solving

	Reusable Chart Templates
	Implementation

	Evaluation
	Gallery
	User Study: Chart Reproduction
	Study Design
	Results

	Comparison to Existing Tools

	Discussion and Future Work
	Limitations
	Manual Manipulation vs. Layout Specification
	Additional Expressivity
	Deployment: Reaching a Worldwide User Community

	Conclusion

