
Critical Reflections on Visualization Authoring Systems

Arvind Satyanarayan, Bongshin Lee, Donghao Ren, Jeffrey Heer,
John Stasko, John Thompson, Matthew Brehmer, and Zhicheng Liu

Abstract—An emerging generation of visualization authoring systems support expressive information visualization without textual
programming. As they vary in their visualization models, system architectures, and user interfaces, it is challenging to directly compare
these systems using traditional evaluative methods. Recognizing the value of contextualizing our decisions in the broader design
space, we present critical reflections on three systems we developed — Lyra, Data Illustrator, and Charticulator. This paper surfaces
knowledge that would have been daunting within the constituent papers of these three systems. We compare and contrast their
(previously unmentioned) limitations and trade-offs between expressivity and learnability. We also reflect on common assumptions that
we made during the development of our systems, thereby informing future research directions in visualization authoring systems.

Index Terms—Critical reflection, visualization authoring, expressivity, learnability, reusability

1 INTRODUCTION

A new generation of interactive visualization authoring systems has
emerged which share a common goal: enabling expressive authoring of
visualizations without burdening authors with low-level concerns. They
contrast with prior visualization systems that leveraged chart templates,
which provide a predefined palette of chart types with only a handful
of customization options, powerful libraries that require programming
expertise [5], or declarative grammars that require textual specifica-
tion [40, 41]. Yet, despite this shared goal, these systems make notably
different design decisions as they trade off two design dimensions:
expressivity, or what visualizations can be created; and learnability, or
how difficult is it to author them? Given these differences, traditional
evaluative methods are difficult to conduct. For instance, comparative
studies are, at best, limited to a small subset of expansive capabilities
and workflow permutations that these systems afford, and it is unclear
how to fairly quantify and equate different interaction models.

In response, we present critical reflections of three systems from
this new generation — Lyra [39], Data Illustrator [18], and Charticula-
tor [34]. Our goal is to extract meaningful lessons about their design
choices and, as their creators, we are uniquely poised to conduct the
necessary in-depth comparisons of their underlying frameworks, sys-
tem architectures, and interface design. Critical reflection does not fit
the typical pattern for evaluation methods as it requires a completed
system and the existence of other related systems; these are impossible
when publishing a novel system. However, when the potential situation
arises, collaborative critical reflections can reveal definitive strengths,
weaknesses, and design rationales between the various systems.

Our critical reflections begin by comparing system components. We
find areas of broad overlap (e.g., in the set of marks available for use),
radically different approaches (e.g., the degree to which scales are
exposed, and how complex layouts are interactively specified), and

• Arvind Satyanarayan is with the Massachusetts Institute of Technology.
E-mail: arvindsatya@mit.edu.

• Bongshin Lee is with Microsoft Research. E-mail:
bongshin@microsoft.com.

• Donghao Ren is with the University of California, Santa Barbara. E-mail:
donghaoren@cs.ucsb.edu.

• Jeffrey Heer is with the University of Washington. E-mail: jheer@uw.edu.
• John Stasko and John Thompson are with the Georgia Institute of

Technology. E-mails: john.stasko@cc.gatech.edu, jrthompson@gatech.edu.
• Matthew Brehmer is an independent researcher; he conducted this work

while with Microsoft Research. E-mail: mb@mattbrehmer.ca.
• Zhicheng Liu is with Adobe Research. E-mail: leoli@adobe.com.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

instances where systems have incorporated each other’s approach (e.g.,
Charticulator offers two distinct data binding mechanisms drawn from
Lyra and Data Illustrator, respectively). Through these reflections, we
distill a set of assumptions that underlie and cut-across all three systems.
Reflecting on these assumptions, we realize they were necessary to
scope our initial research effort, and discuss how relaxing them suggests
exciting opportunities for future work.

We hope this paper can be an example of a different type of visual-
ization contribution [17]: a constructive set of lessons learned through
critical reflection of the development and public deployment of a set of
different but related complex interactive systems.

2 RELATED WORK

In this section, we first present an overview of visualization design and
authoring and summarize two types of approaches—programming and
interactive systems—in visualization authoring. We also briefly de-
scribe the prior theoretical concepts that guided our critical reflections.

2.1 Approaches to Visualization Design
Visualization design is the general process of visualizing data. For the
purpose of data analysis, it includes understanding the domain problem,
the dataset, the task, the visual representation, as well as the algorithms
and computer programs for realizing the design [28]. For communica-
tive visualization, the design process includes generating findings from
data, creating the visual representations, as well as annotating the visu-
alizations and articulating them with supplemental material to clearly
convey the findings. Visualization design often includes the exploration
of design possibilities in an iterative process; designers make decisions
on visual encodings, data content, and the overall composition [1].

We consider the narrower activity of visualization authoring, where
the author already has a desired visual representation in mind, and
has a dataset in the appropriate format. However, here, we discuss
considerations for visualization authoring, as understanding this process
was crucial to the development of our three authoring systems.

Data sketching offers an unrestricted approach to represent data by
physically drawing visualizations that span in fidelity: from throw-
away sketches to finished compositions [36, 44]. Related to sketching,
vector graphic design applications support rapid, computer-supported
design through scene graph representation, composition tools, and
transformation actions. Bigelow et al. analyzed the visualization de-
sign approach of graphic designers in [1], highlighting flexibility over
generative capabilities. Mendez et al. reconcile this tension by propos-
ing a “bottom-up” approach for visualization design, as opposed to the
“top-down” approach seen in other visualization design systems [24,25].

Recently, Elijah Meeks proposed a new way to categorize design
approaches based on the underlying convictions and motivations of the
data visualization community. Meeks defines these modes as the “Three
Waves” of data visualization [22]. The 1st wave focused on Tufte-esque

ar
X

iv
:1

90
7.

13
56

8v
1 

 [
cs

.H
C

] 
 3

1 
Ju

l 2
01

9



clarity, simplicity, and thoughtful composition; the 2nd wave focuses
on encoding of information based on Wilkinson’s Grammar of Graph-
ics [47] in pursuit of mass-production of visualizations; and the 3rd and
current wave is defined by convergence. Meeks argues that a shift has
occurred: moving away from designing individual charts and instead
converging on the construction, evaluation and delivery of information
products as a whole, including but not defined by charts. In other words,
this third wave coincides with a break from chasing the expanding hori-
zon of what visualizations are capable of, and learning from other
visualization design approaches to produce better products. Giorgia
Lupi echos this sentiment in her “Data Humanism” manifesto [19]:

“[the first] wave was ridden by many in a superficial way, as a linguistic
shortcut to compensate for the natural vertigo caused by the immea-
surable nature of Big Data.” In the current wave, Lupi calls for more
meaningful and thoughtful visualization with a focus on the complexity,
context, and imperfection of data. In this paper, we take heed of this
new wave of data visualization: our reflections take a critical look at the
design trade-offs made in pursuit of extending expressive capabilities.

2.2 Computer-Assisted Visualization Authoring
We distinguish between programming-based and interactive approaches
to computer-assisted visualization authoring.

2.2.1 Imperative and Declarative Programming
A wide variety of frameworks, libraries, and declarative languages
for creating visualizations with textual programming or specification
have been created. Further, multiple widely adopted visualization pro-
gramming toolkits and libraries such as Processing [32], D3 [5], and
Vega [41] exist. While such toolkits and libraries achieve the ultimate
expressivity, full mastery requires considerable programming expertise.
The Grammar of Graphics [47] forms the basis of many declarative
visualization grammars, including ggplot [46] and Vega-Lite [40]. Visu-
alization grammars allows authors to use concise and uniform languages
to represent a wide variety of visualizations. While easier to write than
imperative approaches, declarative grammars still pose a challenge as
authors must use text to describe interactive visualizations.

2.2.2 Interactive Systems
In 2013, Grammel et al. [9] surveyed the landscape of visualization
construction user interfaces — roughly synonymous to our term inter-
active visualization authoring systems. While many new systems have
emerged since this survey’s publication [16,37], its distinction between
template editors and shelf construction systems remains valid.

Template editors describe systems like Microsoft Excel, whose ex-
pressivity is limited to the set of available chart types. Some systems
allow extensive customization by providing a variety of fonts, color
schemes, mark types, and graphical styles. Others such as RAW-
Graphs [21] and Flourish [14] provide APIs for developing new tem-
plates, though as with the programming approaches surveyed above,
this option is out of reach for authors lacking programming expertise.

Shelf construction is adopted in commercial systems such as Tableau
(formerly Polaris [43]) and in research prototypes such as Polestar
and Voyager [49]. Instead of using predefined templates, authors map
data fields to encoding channels (e.g., x, y, color, shape). The system
is responsible for generating a valid chart given the author’s shelf
specification. However, these systems do not provide control over the
underlying chart layout, nor do they allow authors to easily produce
compound glyphs comprised of multiple marks.

Finally, another class of interactive systems can be described as
visual builders, and our three systems are members of this class, along
with systems such as iVisDesigner [33], iVolver [26], InfoNice [45],
Data-Driven Guides [15], DataInk [50], and VisComposer [23]. Though
their interfaces tend to be more complicated than those of template- and
shelf-based systems, visual builders provide authors with fine control
in specifying marks, glyphs, coordinate systems, and layouts.

2.3 Guiding Design Considerations
To guide comparison of Lyra, Data Illustrator, and Charticulator, we
draw on prior theoretical concepts for evaluating interactive systems.

From cognitive science, both Hutchins et al. [11] and Norman [30]
define the gulfs of execution and evaluation to refer to the difference
between a person’s intentions and the allowable actions (execution) and
the amount of effort that the person must exert to interpret the state of
the system and to determine how well the expectations and intentions
have been met (evaluation). To bridge these gulfs, one must cover both
a semantic distance — the potential mismatch between mental models
and the system model in forming one’s intention — and an articulatory
distance — the effort required to express that intention [11].

Focusing on user interface construction systems, Myers et al. [29]
define the threshold and ceiling as how difficult it is to learn how
to use the system (threshold), and the expressive gamut of what can
reasonably be achieved using the system (ceiling). Along similar lines,
in the design of the Protovis [4] and D3 systems [5], Bostock et al.
posit high-level design considerations of expressiveness (“Can I build
it?”), efficiency (“How long will it take?”), and accessibility (“Do I
know how?”). We use these same considerations in our comparisons,
but use the term learnability instead of accessibility to avoid confusion.

We also employ the Cognitive Dimensions of Notation frame-
work [3], which provides a set of heuristics for evaluating the effective-
ness of notational systems such as programming languages and visual
interfaces. Example cognitive dimensions include closeness of mapping
(semantic distance of tool representation to domain concepts), hidden
dependencies (are important links between entities visible?), hard men-
tal operations (high demand on cognitive resources), and abstraction
(types and availability of abstraction mechanisms). This framework has
been used to partially evaluate visualization programming approaches
such as Protovis [4] and Reactive Vega [42].

In our subsequent critical reflection, we draw on these concepts
to help identify and contrast salient differences in our visualization
authoring systems, as well as strengths and weaknesses shared by all
three. In particular, we focus on the gamut of visualization designs that
can be created with a given system, what domain constructs are exposed
for expressing such designs, and the physical interactions and mental
operations required for forming, as well as reusing, those expressions.

3 BACKGROUND

Our critical reflections focus on the design of three interactive systems
for authoring expressive visualizations for communication purposes:
Lyra [39], Data Illustrator [18], and Charticulator [34]. These sys-
tems use a vocabulary that is based on widely used visualization terms
(such as marks, scales, axes, and layout) but subtle differences ex-
ist in how each system defines these terms, or introduce new ones.
Here, we briefly recap the core functionality of the three systems by
describing how they can each be used to recreate A Field Guide to
Red and Blue America, a visualization originally published in The
Wall Street Journal [31]. We do not expect readers to understand each
individual detail, but rather wish to lay the foundation for our sub-
sequent discussion on system components, which sometimes refers
back to this example. Video demonstrations of the individual steps
and a more comprehensive comparison of terminology are available at
https://vis-tools-reflections.github.io.

The visualization uses bar charts to depict how each state’s partisan
lean has shifted over time. The bar charts are positioned in a grid
structure that mimics the geographic location of their corresponding
states. The dataset comprises six columns: the State, GridX- and
GridY-coordinates for where this state lies in the grid, Year and PVI
which are annual measurements of how the state voted relative to the
nation as a whole, and an Inclination field to indicate whether that
measurement represents a more Democratic or Republican lean. The
original visualization and an excerpt of the data are shown in Figure 1.

Lyra: We drag a rectangle mark from the toolbar to the canvas. To
produce one bar chart per state, we add a “Group By” transformation
and drag the State field to its property inspector. Doing so introduces
a corresponding group mark and nests our rectangle mark within it.
We position these groups by dragging the GridX and GridY fields
to the width and height drop zones respectively. Doing so sets both
the position and dimensions of the groups by producing the necessary

https://vis-tools-reflections.github.io


……… …… …

‘88CA 3 -1.5 Dem0

‘84 1.63CA Rep0

Rep0 3.1‘803CA

InclinationPVIYearGridYGridXState

Fig. 1: Recreating the Wall Street Journal’s A Field Guide to Red
and Blue America [31] visualization using Lyra, Data Illustrator, and
Charticulator (top to bottom), with an excerpt of the backing dataset.

scales and axes (we manually remove the latter using the right-hand-
side listing). These steps give us a single rectangle for each state,
positioned in the grid. To create the bar chart, we drag Year and PVI
to the rectangle’s width and height drop zones respectively, and remove
generated axes. We click to edit the newly generated y-scale, and
adjust its range in the configuration panel to depict bars rising or falling.
To color the bars, we first add a “Formula” transform that calculates
an Inclination using a ternary expression (PVI > 0 ? ’Rep’ :
’Dem’). Next, we drag this field to the rectangle’s fill color and adjust
the range of the generated scale to color bars red or blue. Finally, we
drag a text mark and drop it over the selected rectangle’s top-middle
connector. This action produces one text mark instance per rectangle,
and anchors the two together. We drag State to the content drop zone
to correctly label each chart. In the text mark’s configuration panel, we
toggle a checkbox to ensure only one label is produced per state, and
adjust its appearance (e.g., using boldface and a black font color).

Data Illustrator: We begin by selecting the “Rectangle” shape, and
drawing a rectangle on the canvas. We click the “Repeat” button, select
the State field from the drop-down menu, and use the handle to drag
out a collection of rectangles, roughly one-per-state. To produce a bar
chart, we click into this collection to select a single rectangle, and then
click the “Partition” button. In the dialog box, we select the Year field
to generate one rectangle per-year, per-state. To correctly position these
bar charts, we select the collection of rectangles and click the “Break
Grid” button. Under the “Composite Position” panel, we click the
data binding icon to map the x and y properties to GridX and GridY
respectively. We drag the x- and y-axis handles to produce a larger
visualization, and drag the peer counter slider out to display all states
in the collection. To color the bars, we select an individual rectangle
and bind the Inclination field to its fill color. A color legend is
automatically added, and we click each legend item to customize the
color palette used. To determine the bar heights, we use the “Direct
Select” tool and click on the top line segment of a rectangle. In the
“Segment Position” panel, we bind the y property to PVI, and drag the
y-axis handle to ensure bars rise or fall as appropriate. We follow a
similar set of steps to label the charts: adding a text mark to the canvas,
repeating it by State, and breaking the grid. We bind the x and y
positions to GridX and GridY, and choose to reuse the existing scales
in the data binding menu. Finally, we bind State to the text content.

Charticulator: We begin by dragging a rectangle mark from the tool-
bar to the glyph editor. This step generates one rectangle per tuple in
the dataset. To lay them out as a series of state bar charts, we drag
GridX and GridY to the x- and y-axis drop zones of the plot segment
(the central region in the chart canvas), select it, and choose the “Stack
X” sub-layout option from the toolbar. In the configuration panel, we
click to toggle the visibility of the x- and y-axes. Dragging PVI to the
rectangle’s height drop zone in the glyph editor, and Inclination to
its fill color property inspector, correctly sizes and colors the rectan-
gles. Clicking the data binding icon reveals a configuration panel to
customize the color palette. To label each state, we select the text mark
and, in the glyph editor, click the top of the rectangle mark to anchor
the two together. In the “Attributes” panel, we click the “Conditioned
By” button, click the Year field in the drop-down menu, and choose
the first year. These steps ensure there is only one label generated for
each state. Finally, we drag State to the text property inspector, and
make adjustments to its position.

4 CRITICAL REFLECTIONS ON OUR SYSTEM COMPONENTS

We define critical reflections as informal discussions by system or
toolkit builders to concretely define their collective objectives in support
of the user community, and candidly assess the ways each system meets
or falls short of these objectives. In our case, all system builders met
weekly for 1 to 2 hour video conference meetings over the course
of 3 months. During these meetings we directly compared our three
systems: commenting on our design and implementation, reflecting on
practical feedback from the user community, and addressing missed or
unexplored research directions. To structure these conversations, we
began by considering the eight evaluative dimensions proposed by Ren
et al. [35]. We documented these discussions by recording meeting
notes in a shared online folder. At times, comparing the systems
required isolated, preliminary reflection on the individual authoring
systems which we documented in the shared folder. Each team carried
out these isolated reflections as “take-home” tasks before the next
weekly meeting. These isolated activities provided the due time to
exhaustively consider the ways in which each system met or fell short
of our defined objectives.

Through this process, we collectively identified expressivity and
learnability as pervasive dimensions. Our process also has the benefit
of drawing on our collective experience to find relevant consensus and
build shared vocabulary. In this section, we detail the main components
the three systems expose and how users create and manipulate them
(see Table 1 for the summary).



Table 1: Summary of the main components for the three systems. denotes what features each system supports and denotes how these
components are invoked through the user interface. Video demonstrations are available at https://vis-tools-reflections.github.io.

Lyra Data Illustrator Charticulator

Mark Instantiation &
Customization

predefined marks only
drag from toolbar

custom vector shapes
draw with Pen tool; manipulate path

points & segments with Direct Selection tool

predefined marks only
drag from toolbar; draw in glyph editor

Glyph Composition create layers group marks compose in glyph editor

Path Points & Path Segments map data values to point x, y positions partition line marks; draw with Pen tool connect glyphs using the Linking tool

Links between Glyphs add a force-directed layout transform not supported connect glyphs using the Linking tool

Data Scoping for Glyphs one or more tuples per glyph
no user action needed for one tuple per

glyph; “group by” for multiple tuples per
glyph

one or more tuples per glyph
repeat or partition

one or more tuples per glyph
no user action needed for one tuple per

glyph; “group by” for multiple tuples per
glyph

Mapping Data Values to
Visual Properties

drag data fields to property inspector or
drop zone

choose data field from drop-down menu perform either method

Scales all D3/Vega scales
a scale is created when a data binding is

applied; a scale can be created manually,
and exists independently from data binding

scales for categorical, temporal, and
numerical data

a scale is created when a data binding is
applied; users choose whether to reuse or
merge a scale from a previous data binding

scales for categorical, temporal, and
numerical data

a scale is created when a data binding is
applied; by default, reuses a scale from a
previous data binding

Axes & Legends an axis or legend is created when a data
binding is applied; they can be created
independently from scales; properties are
customized in configuration panel

an axis or a legend is created when a data
binding is applied; they can be manipulated
through on-canvas interaction, which
changes the underlying scale

an axis or a legend is customized through
configuration panel; a legend needs to be
explicitly added through a button-click

Relative Layout drag a target mark to a host mark’s anchor specify through grouping, distribution,
and alignment

specify through anchors, guides, handles,
margins, and alignment

Layout in a Collection stacking, force-directed, cartographic
projections, and pie charts

add a data transformation via button-click

grid and stacking
apply repeat/ partition actions

grid, stacking, and circle packing
use scaffolds and sub-layouts to position

glyphs

Nested Layout “group” marks are created when dragging
data fields to “group” drop zones or applying
a “group by” data transformation

concatenate repeat and partition actions
in a flexible order

map categorical data columns to X & Y
axes and apply sub-layout; embed a
Charticulator template as a nested chart

Coordinate Systems Cartesian Cartesian Cartesian, polar, and arbitrary curve
drag from toolbar into a plot segment

4.1 Marks

Instantiating marks is a fundamental operation in visualization author-
ing systems. A mark is a primitive graphical element in a visualization,
which includes rectangle, symbol, line, arc, image, and other shapes.

In Lyra, an author may instantiate a mark by dragging the corre-
sponding icon from the marks toolbar to the canvas. Data Illustrator
uses a toolbar similar to vector graphics editing applications. An au-
thor instantiates a mark by activating the desired tool, and then draw
on the canvas by mouse clicks and drags (depending on the system).
Charticulator supports both approaches. While the drag-and-drop ap-
proach increases directness by requiring just one single action to create
a mark, the system will need to provide a reasonable default location
and size for the mark. When such choice is not valid, the author may
see unexpected results. On the other hand, Data Illustrator’s interaction
introduces a state of the currently activated tool. When the author
loses track of this state, s/he may unexpectedly create an unwanted
mark. Charticulator relieves this problem by making the activated state
one-off — after creating the mark, the system deactivates the mark tool.

Authors sometimes need to create a glyph consisting of one or more
marks. In Data Illustrator, this is done by drawing marks on the canvas
and grouping them. Lyra similarly offers a “group” mark. Charticulator
introduces a special canvas called the glyph editor, and marks can be
instantiated in either the glyph editor or the chart canvas. Providing a
separate glyph editor affords a larger editing region for a glyph, and
makes it easier to select and manipulate marks. However, it introduces
a deviation from conventional single canvas authoring systems. This
design also requires the author to be aware that what is shown in the
glyph editor is a prototype, and to predict the effect of an action on

instances other than the currently selected one. Separating interactions
between a glyph editor and a chart canvas also creates confusion, as
the author will need to know the roles of the two canvases, and decide
where to select and manipulate an object.

While Lyra and Charticulator rely on predefined mark types such as a
rectangle, symbol, or text, Data Illustrator supports a wide spectrum of
custom shapes by providing a “pen” tool — a common feature in vector
graphics software. All shapes besides text and image are represented as
paths. A path consists of multiple path points and path segments. An
author can freely manipulate path points to achieve a desired shape. In
addition, the location of path points and path segments can be bound
to data. While this might be hard to learn for authors unfamiliar with
vector graphics editing software, having such flexibility over mark
shapes increases Data Illustrator’s expressiveness.

In Lyra and Data Illustrator, marks include not only individual ele-
ments, but also polylines or curves that connect multiple data points.
Lyra supports line and area marks. The (x,y) position for such marks
can be bound to data to create lines or areas that connect through these
points. In Data Illustrator, a line can be partitioned by a data column,
resulting in a line with multiple path points. The (x,y) coordinates
of such path points can be bound to data. In Charticulator, however,
glyphs (which may contain multiple marks) are by design individual
graphical elements. Each glyph corresponds to one or a group of data
tuples. To create visual links between glyphs, authors need to use the
“linking” tool, which draws lines or bands between glyphs. This sepa-
ration of glyph and link introduces a level of indirectness that impacts
learnability, as even basic line charts must use the link tool. However,
it increases Charticulator’s expressiveness, making it possible to create
charts that have links, such as chord diagrams and arc diagrams.

https://vis-tools-reflections.github.io


4.2 Data Binding
Data binding is a core operation in authoring visualizations that involves
(1) generating glyphs based on data, and (2) specifying a mapping
between data fields and mark properties such as position, color, or size.

4.2.1 What Data Does a Glyph Represent?
In Lyra and Charticulator, a glyph represents one data tuple, respec-
tively. Authors thus need to prepare the dataset to fit this assumption.
For example, to create a bar chart, each row in the dataset must corre-
spond to one bar. Based on this assumption, the generation of glyphs
is automatic in these two systems. Whenever a glyph is updated in
the Glyph Editor in Charticulator, the system automatically generates
glyphs, one per tuple; similarly, in Lyra, glyph generation by data is not
a user operation. The underlying Vega grammar follows a declarative
approach, and considers explicit glyph generation to be imperative.
Glyphs are thus automatically generated by Vega when authors specify
a mapping between a data variable and a visual property.

Data Illustrator relaxes the requirement of one-to-one glyph-tuple
mapping, and allows a glyph to represent one or more tuples through
two core operations: repeat and partition. Using the Field Guide to Red
and Blue America dataset as an example (Section 3), one can repeat
or partition a rectangle using any of the categorical data variables.
Repeating a rectangle by State will generate 51 rectangles (50 states
and D.C.), and each rectangle represents all the tuples sharing the same
State value. The tuples represented by each glyph are called the data
scope of the glyph. The notion of data scope applies to path points and
segments too. We can partition a line using State, and each point on
the resultant path represent the corresponding tuples as its data scope.

Data Illustrator’s approach allows authors to dynamically aggregate
data via direct manipulation in a more uniform fashion than the other
two systems. For instance, authors can create a bar chart where each
bar represents a State and the height encodes the average PVI values.
To perform the same operation in Lyra, authors need to instantiate
a “Group By” data transformation followed by a “Stats” calculation
via the left-hand side configuration panels. Similarly, in Charticulator,
authors need to specify a “Group By” attribute on the plot segment,
which aggregates the data with user-selectable aggregators.

This improved expressivity, however, introduces an additional layer
of complexity as authors must verify and keep track of the glyphs’ data
scopes. To address this issue, Lyra and Data Illustrator dynamically
update the data table panel to reflect the data scope of selected marks.

These differences in glyph-tuple mapping have significant implica-
tions on authoring nested layouts, which we discuss in Section 4.4.3.

4.2.2 Mapping Data Values to Visual Properties
Lyra offers two ways for constructing a data binding: data fields can
be dragged to a property’s inspector or to a property drop zone, a
shaded region that overlays the visualization canvas. Data Illustrator
eschews drag-and-drop interaction in favor of button-clicks. Properties
that can be data-driven display a binding icon alongside their inspector;
clicking the icon reveals a drop-down menu of data fields that the author
can choose from. Charticulator adopts both approaches — fields can

be dragged to drop zones or can be chosen from a drop-down menu
revealed by clicking a property’s binding icon. Figure 2 illustrates these
different approaches.

The differences in these data binding interactions are grounded in
learnability. Lyra’s design sought to be familiar to Tableau users, while
also increasing their sense of directness. Thus, dropping fields to
property inspectors recalls Tableau’s “shelves” metaphor [43] while
adding additional drop zones to the visualization canvas. Overlaying
drop zones directly over the properties they correspond to narrows the
gulf of execution [30]. A first-use study confirmed these effects as
participants described drop zones as “natural” and “intuitive” and,
when compared to Tableau’s shelves, made them feel more in control.
However, participants also identified two weaknesses in this interaction
model: (1) drop zones provide a small active region that can be difficult
to hit consistently; and (2) drop zones rely on a having a mark selected,
which determines how drop zones are depicted, and can be difficult to
keep track of after a data binding occurs.

Data Illustrator was intentionally designed to address these short-
comings, and identified two additional concerns. Tableau and Lyra ask
authors to perform dragging operations over potentially long distances,
which yields a poor experience in terms of both efficiency and acces-
sibility (e.g., for users with motor impairments). Moreover, neither
system makes it clear if particular data bindings would result in inex-
pressive or ineffective outcomes [20] (e.g., binding a quantitative field
to an identity channel such as shape [28]). Data Illustrator’s binding
icon, in comparison, provides a single interface element that is con-
sistently displayed regardless of the particular property being targeted.
Clicking the icon, and selecting a field from the drop-down menu, is
more efficient than performing a drag operation, and available fields are
filtered to ensure only valid data bindings can be constructed. These
gains, however, are offset by a loss of directness — data binding is
the only core operation in Data Illustrator that cannot be specified by
manipulating the visualization itself.

Charticulator makes the fewest compromises by adopting both the
binding icon and drop zone model, and refining the latter in a few cru-
cial ways. When one begins to drag a field, only valid drop zones are
shown (and corresponding property inspectors highlighted) to ensure
that improper data bindings cannot be constructed. And, the drop zones
are visualized in the glyph editor, providing a single consistent place in
the interface for interacting with them rather than Lyra’s dependence on
the currently selected mark instance. As a result, Charticulator is able
to maintain Data Illustrator’s efficiency and accessibility advantages,
without sacrificing Lyra’s directness. Echoing Lyra’s evaluation, partic-
ipants in Charticulator’s usability study rated drag-and-drop interaction
as one of the aspects they liked most about the system.

However, there are still opportunities for further improvement. Char-
ticulator’s drop zones, like Lyra’s, provide a relatively small active
region and thus require the author to perform a fairly precise inter-
action. This design can yield a frustrating experience when a author
drops a field close to, but not directly over, a drop zone. Inspired by the
bubble cursor [10], an in-development version of Lyra accelerates drop
zone acquisition by computing an invisible Voronoi tesselation over

Fig. 2: Data binding via dropzones in Lyra (left), via the binding icon in Data Illustrator (middle), and via either approach in Charticulator (right).



valid drop regions. Thus, the drop zone nearest to the mouse cursor is
automatically chosen and the author no longer needs to drop directly
over a drop zone to successfully establish a data binding.

In all three systems, the outcome of establishing a data binding
is immediately reflected on the visualization canvas. This behavior
tightens the feedback loop, enabling a more iterative authoring process
and reducing the gulf of evaluation [30]. Lyra and Data Illustrator,
however, identify a further need to bridge this gulf. They note that
interactive data binding results in an accretive authoring process that
displays intermediate visualization states to the author. For instance,
in Lyra, binding a rectangle’s height before its x-position or width
produces a set of overlapping mark instances. In Data Illustrator, a
mark’s data scope (i.e., the set of tuples it is bound to) may change over
time. Both systems scaffold this experience by exposing the backing
data in a persistent tabular interface (Charticulator’s data table is a
modal display). Data Illustrator goes a step further by only displaying
records in the table that correspond to the selected mark’s data scope.

Although our discussion here has centered on how these data binding
interactions are designed to support learnability, there are important
expressivity concerns as well. For instance, Lyra’s two data binding
mechanisms carry different semantics. When a data field is dragged
to a drop zone, the system automatically infers the necessary scale
functions and adds appropriate axes or legends to the visualization.
This inference does not occur if the field is dropped over a property
inspector, allowing for more fine-grained design choices (e.g., if the
author wishes to use a scale function they have manually constructed,
as described in 4.3) or for authors to bypass scale functions and have
visual properties set to data values directly (e.g., when colors carry
semantic resonance, as is typical with public transit data, or if data
values are produced by algorithmic layouts, see 4.4). However, Lyra
does not provide clear affordances communicating these differences in
its interface. When an author releases a field over a property inspector,
they may notice that the corresponding interface element for a scale
function does not appear, but this difference is subtle and requires them
to have a sufficient level of expertise to understand the purpose of scales.
One could refine this design for learnability, without sacrificing the
expressivity gains, by making it opt-in: by default, dropping fields on
property inspectors could still trigger scale inference, but a dialog box
could allow more advanced authors to bypass it for future interactions.

Data Illustrator’s data binding also carries subtly different semantics
compared to the other two systems. If a data binding is removed,
marks do not revert back to their previous, unbound appearance (as they
do in Charticulator and Lyra). Instead, they return to being standard
vector shapes that can be manipulated via drawing interactions like
dragging to resize, rotate, or move. This strategy, called a lazy data
binding, enables “fuzzy” layouts that approximate the original data
values and supports an approach that researchers have found occurs
commonly in practice, as designers seek to maintain a flexible and
rich design process [1]. While powerful, it is also important to note
that this technique is ripe for misuse, making it easier for people to
author visualizations that look roughly accurate but with subtle changes
introduced. Although it would be impossible for a system to entirely
prevent such misleading visualization from being created, there are a
number of ways that these outcomes could be mitigated. For instance,
the system could warn authors and ask them to confirm their desire to
remove a data binding. Marks that are subsequently manipulated could
be identified with a persistent warning in their configuration panel, with
an option to revert any changes. Or, the output visualization could
allow readers to re-establish data bindings and compare the differences
for themselves (e.g., via an overlay display or through animation).

4.3 Scales, Axes, and Legends

Our systems all use three constructs to operationalize data bindings: (1)
scales, functions that map the data domain to a range of visual values;
(2) axes, visualizations of spatial scales; and, (3) legends, visualiza-
tions of scales of non-spatial properties such as color, shape, or size.
However, how visible these abstractions are to authors, and how the
constituent properties are manipulated, vary significant as the three
systems make different tradeoffs between expressivity and learnability.

4.3.1 Scale Visibility
When a data binding interaction is performed, all three systems auto-
matically construct any necessary scale functions. However, they lie
along a spectrum with regards to the degree these scales are exposed
to the author. At one end lies Lyra, which provides scales as first-class
primitives: authors are able to manually construct a scale independent
of any data binding interaction. At the other end sits Charticulator,
which does not distinguish a scale from its axis or legend — controls to
modify the domain or range are shown on axis or legend configuration
panels. And, Data Illustrator lies in-between. When an author clicks
the bind icon they are prompted to create a new scale, or reuse an
existing scale if the field has been previously used. Similarly, via the
same interface, authors can elect to instead merge scales, producing a
single scale with a domain unioned across several fields.

The level of visibility has clear implications for expressivity. For
example, in Data Illustrator, merging the scale functions enables au-
thoring Gantt Charts where task start and end times are recorded as
separate fields. Authors using Lyra have complete control over scale
functions. Thus, they can create a scale with a domain that spans
multiple distinct data fields, subsequently use it with a field outside
of its domain to determine a data binding, and reuse or merge scales
in a more fine-grained fashion than in Data Illustrator. This flexibility
can be important even for creating simple visualizations. For instance,
consider a scatterplot in which the author wants to ensure Euclidean
distances are accurately plotted, or an asymmetric adjacency matrix.
Both these examples require using a single scale function for both the
x and y dimensions, with a domain unioned over two data fields.

However, this expressivity comes with a non-trivial complexity cost.
Once an author establishes a data binding, Data Illustrator’s interface
does not make clear which scale function is being used — is it a new
scale, is it an existing scale, or have scales been merged? Though
HCI theory cites maintaining high visibility into system components
as an important dimension for reducing the gulf of evaluation [3, 11],
on-going feedback for Data Illustrator and Lyra indicate that authors
struggle to understand the role that scales play. In Lyra, this issue
is compounded by the additional user interface elements that come
with first-class scales: a separate panel that lists all available scale
functions; and, a corresponding interface element for each scale that
can be dragged and dropped, and appears alongside data fields as part
of a data binding. Ironically, behavior that was designed to reduce
interface clutter — scales, axes, and legends that were automatically
created are also automatically removed when they no longer participate
in a data binding — has had the knock-on effect of increasing churn
in the user interface. How best to address this complexity, without
losing the expressivity gains, remains unclear. An “advanced” mode is
unappealing, as it introduces additional discovery costs, and would turn
this complexity into a cliff rather than smoothing it out. We explore an
alternate strategy Lyra might take in the subsequent subsection.

4.3.2 Manipulating Axes & Legends
Data Illustrator and Charticulator couple a scale to its axis or legend
representation. Modifications of axis or legend properties (e.g., specify-
ing an alternate color palette) map to transformations of the underlying
scale function. Lyra, on the other hand, provides axes and legends
as first-class primitives that can be modified independently from the
corresponding scale. Lyra’s approach yields expressive gains as well
as a less viscous user experience [3] — for instance, axes and legends
can be created to visualize scales that do not participate in a data
binding, and alternate scales can be chosen without losing any axis
or legend customizations. Nevertheless, to address the complexity of
scale visibility, Lyra may consider adopting a hybrid approach: scales,
axes, and legends remain first-class primitives that can be manually
constructed and independently customized, but are coupled if they are
created automatically during a data bind.

As Figure 3 shows, authors customize axes and legends via configu-
ration panels in Lyra and Charticulator while Data Illustrator opts for a
more direct interaction model: authors can click and drag to reposition
axes and legends; handles overlay axes on hover and can be dragged to
shorten or lengthen an axis; and clicking individual entries in a color



Fig. 3: Lyra’s scale listing and configuration panel (top-left), Data
Illustrator’s direct manipulation controls for axes and legends (top-
right), and Charticulator’s scale configuration panel (bottom).

legend launches a color picker. Data Illustrator’s interaction model sig-
nificantly reduces the articulatory distance of modifying scale functions
but also introduces concerns of hidden dependencies [3]. As axes and
legends provide the sole mechanism for reifying scale functions, if they
can be freely repositioned on the canvas, it can be easy to lose track of
which marks they correspond to. More problematically, support direct
manipulation modification has slowed down progress on expanding ex-
pressivity. Although Data Illustrator’s underlying framework is capable
of expressing axis and legend customizations (e.g., to grid lines, ticks,
labels, etc.), how to expose this functionality via direct manipulation
remains ongoing work. Lyra’s configuration panels, though they afford
less of a sense of directness, provide an extensible interface component
that surfaces these fine-grained properties in a consistent fashion.

Charticulator makes an important exception to its treatment of axes
and legends: legends, unlike axes, are not automatically added to the
visualization. Instead, authors must manually add a legend using a
predefined legend element or by creating a new glyph in a separate plot
element. Although authors could choose to manually create custom
legends in Lyra or Data Illustrator, Charticulator makes this choice
more explicit. This approach is designed to recognize that while axes
have a mostly uniform appearance (a main horizontal or vertical line,
with individual tick lines, labels, and a title), legends have a much
more expressive design space.1 For instance, a designer may choose to
directly label a multi-series line chart rather than use a separate legend.
By not automatically adding a legend, Charticulator seeks to reduce an
author’s propensity for design fixation [12], but it incurs a non-trivial
learnability cost. The button to add a pre-defined element is buried
within a configuration panel (see Fig. 3), and creating a high-fidelity
legend can be as complex as authoring the original visualization. Future
versions might lower this threshold [29] through new abstractions for
generating legend entries (e.g., akin to Data Illustrator’s repeat).

4.4 Layout

To enable expressive layout, the systems expose a variety of methods
for manual and relative positioning along a coordinate system, as well
as collective placement for nested and small multiples displays.

1A comparison of the axis and legend design spaces, using the Vega visu-
alization grammar [41] is available at https://observablehq.com/@vega/
a-guide-to-guides-axes-legends-in-vega.

4.4.1 Relative Layout
Both Lyra and Charticulator use an anchor for relative positioning
between visual objects. In Lyra, once authors establish a connection
by dragging a target mark onto a host mark’s anchor, the target marks
position is automatically determined by the host’s properties. Similarly,
Charticulator uses anchors and handles to specify the layout relation-
ship between two objects in both the glyph level (i.e., between marks)
and in the chart level (i.e., between plot segments and one-off marks).
Moreover, Charticulator’s marks have margin and alignment properties
that can be used for similar means. For example, a text mark repre-
senting a data value for each bar can be placed at the bottom of the bar
(inside or outside) or at the top of the bar (with the same distance from
the bar). Snapping one mark to another results in a snapping constraint,
which remains in effect unless the author proactively unsnaps the mark.
These behaviors are not found in vector graphics environments. Despite
a learnability cost, these constraints specify more reusable designs.

4.4.2 Layout in a Collection
After generating shapes from data (Section 4.2.1), we get a collection
of marks/glyphs. In Lyra, these glyphs are placed at the same posi-
tion, overlapping each other, since they are duplicates of the original
glyph prototype. Doing so, however, would not reveal that multiple
glyphs have been created and this could confuse people. To address
this problem, Charticulator introduces a scaffold to position the glyphs
in simple (horizontal or vertical) stacking, grid, and circle packing
layouts. Data Illustrator adopts a similar approach. Marks generated
by the repeat operation are placed in a grid layout by default, whereas
marks generated by the partition operation are stacked by default. The
interface allows one to adjust the horizontal and vertical gaps in a grid
layout by directly manipulating padding handles. These design choices
allow automatic positioning of glyphs in a collection without any spec-
ification of mappings between data variables and spatial coordinates.
Once an author binds a data variable to the x- and y- positions of marks,
an axis is generated and the glyphs are placed based on data values.

4.4.3 Nested Layout
Nested visualizations such as grouped bar charts and small multiples
are common. As mentioned in Section 4.2.1, the differences between
the systems in terms of mark generation and data mapping have ram-
ifications on the creation of nested structures. In Charticulator, once
a rectangle is added in the glyph editor, the system automatically gen-
erates all the marks, one mark per tuple. The main task is thus to lay
out these marks. The basic layout in the Field Guide to Red and Blue
America example (Fig. 1) is specified in three steps in Charticulator:
bind GridX to the plot segment’s x-axis, bind GridY to its y-axis, and
apply “Stack-X” sub-layout (Fig. 4). When binding a variable to an
axis, Charticulator makes automated decisions: if the variable is cate-
gorical, and if multiple marks share the same value, Charticulator will
group these marks and apply a default grid sub-layout to arrange them;
if the variable is numerical, no grouping will be applied, and the marks
will be at the same position, on top of each other. This automated
decision requires GridX and GridY to be formatted as strings (e.g.,
“I5”) instead of numbers (e.g., 5). Authors unaware of this logic may
have difficulties in understanding system behavior.

Nested layout in Data Illustrator is achieved by combining repeat and
partition operations. Figure 4 shows one workflow: partition a rectangle
by Year, which results in a collection of rectangles; then repeat the
collection by State. Alternatively, we can repeat a rectangle by Year,
and then repeat the resultant collection by State. The combination of
repeat and partition operations is flexible, and requires authors to have
a good understanding of how these two operations work.

In Lyra, nested layouts are achieved via “group” marks that are
automatically instantiated when authors drag data fields to the “Grouped
Horizontally” or “Grouped Vertically” drop zones, or instantiate a
“Group By” data transformation. These marks, akin to Charticulator’s
plot segments, serve as containers for axes, legends, and graphical
marks. Thus, to recreate our example, we first add a “Group By” data
transform and drop State into its property inspector. We then drag
GridX and GridY to the resultant group mark’s “width” and height

https://observablehq.com/@vega/a-guide-to-guides-axes-legends-in-vega
https://observablehq.com/@vega/a-guide-to-guides-axes-legends-in-vega


Data Illustrator

1. Add a Rectangle 2. Partition by Year 3. Repeat by State 4. Break Grid
GridX, Y → Position

G
rid

Y

GridX

Charticulator

1. Add a Rectangle
to the Glyph

3. GridY → Y

G
rid

Y

GridX

4. Sub-layout “StackX”
G

rid
Y

GridX

Lyra

1. Add a Rectangle 2. Group by State 4. Year → Rectangle.X
GridX

G
rid

Y
2. GridX → X

GridX

3. GridX, Y → Position

G
rid

Y

GridX

Fig. 4: A step-by-step illustration of how to recreate the layout in The
Wall Street Journal’s A Field Guide to Red and Blue America [31] with
each system (data is reduced to four states and five years for simplicity).

drop zones, respectively, which both positions and sizes the groups.
Like Charticulator, Lyra expects GridX and GridY to be strings to infer
a categorical scale for group positioning. Lyra’s approach is the weakest
of the three systems, as it introduces a set of hidden dependencies that
present a highly viscous experience [3]. A priori it is not at all clear
that group marks exist, and if one wishes to switch between horizontal
and vertical layouts, they must remove and recreate the grouping.

These different ways of representing and constructing nested layout
have implications on component selection. As Lyra maps interactions
to declarative statements in the Vega visualization grammar, which
does not formally represent graphical components such as collections,
there are fewer types of selectable components. In Data Illustrator,
the selection mechanism is hierarchical: Clicking once selects the
top level collection, double clicking opens up the collection so that
the individual marks can be selected. This design closely follows
the selection model in Adobe XD. Selecting a mark can be tedious,
however, if authors intend to select a mark embedded in multi-level
nested collections, multiple double clicks are needed to open up the
collections hierarchically. To avoid this problem and reduce visual
clutter, Charticulator provides two separate editing canvases: a glyph
editor, and a chart canvas. The selection of marks and anchor points
can take place in either the glyph editor or the chart canvas. Selecting a
glyph or a plot segment solely happens in the chart canvas.

For more complicated visualizations such as small multiples with
multiple levels of nesting, Data Illustrator keeps a consistent user in-
terface, allowing people to apply the repeat operation multiple times.
Similarly, Lyra’s group marks can be nested arbitrarily deep, by instan-
tiating additional “Group By” transforms, or using the corresponding
drop zones. Charticulator, on the other hand, extends the notion of a
glyph to include a “nested chart.” To create a nested chart, one can
either import a pre-exported Charticulator template, or use the “nested
chart editor,” which is essentially a popped-up Charticulator user inter-
face with the nested chart and its corresponding portion of the dataset.
Authors can then generate glyphs with “nested charts” by data. There
are some limitations of this approach, however. Each small multiple
instance has its own constraint solver, thus it’s not possible to add
constraints across the instances. In addition, scale and axis parame-
ters are currently shared across instances of small multiples, but they
are inferred from a single small multiple instance. The author has to
manually unify scales/axes across all instances.

4.4.4 Coordinate Systems

The Cartesian coordinate system is a fundamental aspect of chart lay-
outs. As such, Lyra, Data Illustrator, and Charticulator all support the

Cartesian coordinate system. However, each takes a different approach
to address additional coordinate systems or more advanced layouts
including algorithmic ones.

Lyra’s grammatical primitives only offer compositional expressivity
for the basic Cartesian coordinate system and its “reactive geome-
try” [41] makes it possible to anchor marks together for additional
layouts (e.g., stacking, pie charts). Lyra supports more advanced lay-
outs (e.g., treemaps) using modules that can be invoked from button
presses/property inspectors, often requiring a specific data format (e.g.,
geographic, hierarchical, network data); people need to choose from
a typology of data transformations. In other words, Lyra’s different
specification options result in an inconsistent interaction model.

In contrast, Data Illustrator’s repeat and partition operators offer a
consistent mechanism for basic and advanced layouts, but important
implementation and conceptual limitations remain. Support for po-
lar coordinates is conceptually well-defined though it has yet to be
implemented. For instance, partitioning a circle would produce a pie
chart. However, how these operators extend to support geographic,
hierarchical, or network data is an open question.

Charticulator’s system of constraints offers the most uniform under-
lying model for layout, enabling coordinate systems such as polar and
arbitrary curve coordinates, in addition to Cartesian. Advanced layouts
can be implemented as a module and incorporated into Charticulator via
an additional panel (as Lyra did). However, because this is not aligned
with one of the core design goals (i.e., enabling people to specify a
novel layout using a set of partial constraints), we acknowledge these
additional algorithmic layouts as a known limitation.

5 CRITICAL REFLECTIONS ON OUR SHARED ASSUMPTIONS

The previous section explored the ways in which our three systems
differ with respect to the tradeoffs between expressivity and learnabil-
ity. To complement our reflection on differences and tradeoffs, we
now reflect upon our systems’ shared assumptions about the authors
who use our systems, the data that authors load into our systems, the
tasks that they perform, the system requirements, and the content that
authors export from them. We now have greater clarity regarding these
assumptions, assumptions that were not explicitly defined when we
set the scope of our research and developed these systems, when our
priorities were primarily expressivity and novelty. We acknowledge
that these priorities likely hindered the adoption of these deployed
systems to some extent. Reflecting on these simplifying assumptions
provides opportunities for further refinement to drive adoption as well
as directions for future research.

5.1 The Author: Literacy & Skill Transfer
A shared assumption underlying our systems is an author’s desire
to visualize data without programming while still exhibiting a level
of comfort with computational thinking; otherwise they would have
elected to manually illustrate their charts (e.g., using pen & paper or
a vector graphics application). We further assume some level of data
literacy, as authors would need to understand the structure and type of
data that can be loaded into the systems.

Another shared assumption pertains to familiarity with other systems.
Given Data Illustrator and Charticulator’s ties to Adobe and Microsoft,
respectively, they may attract authors who are already familiar with
other systems produced by these organizations. For instance, expe-
rience using Adobe Illustrator may help people as they learn to use
Data Illustrator, while a familiarity with configuring custom visuals
for Microsoft Power BI may contribute to the process of learning to
use Charticulator. However, skill transfer may occur from many other
sources, and thus attaining a better understanding of skill transfer for
learning our systems is an important direction for future research.

5.2 The Data: Cleaned & Pre-Processed
With regards to the data that people load into our systems, our common
assumption is that the data is an appropriately formatted CSV, TSV,
or JSON file. Based on the example charts showcased in the systems’
respective papers and online galleries, the size of the datasets in these
files is also small: a handful or columns and dozens of rows, or a few



hundred rows at most. There are no missing or erroneous values, and
the data has already been appropriately cleaned, filtered, and aggregated
using some other set of data preparation and analysis tools. Finally, the
data is static, meaning that the structure or values of the data will not
change at some later point in the authoring process.

All three systems exhibit an issue that we call schematic congruency:
authoring a visualization may require the backing dataset to be struc-
tured or formatted in a particular way that may not be clear to authors a
priori. In particular, all three systems expect datasets to be structured in
a long (often referred to as “tidy,” and as opposed to wide) format. Data
Illustrator and Charticulator do not provide facilities to transform the
backing data beyond sorting and calculating summary statistics such as
the mean or median. Lyra, on the other hand, provides a palette of data
transformations including operators to filter and aggregate the dataset,
as well as derive new calculated fields.2 An additional set of layout
transformations support ingesting non-tabular data (e.g., networks or
geographies) but they impose their own set of structuring and format-
ting concerns that are invisible to the author. For example, the nodes
and links of a network must be imported as two separate datasets, with
each link described by properties named source and target exactly.

Although supporting a rich set of data wrangling capabilities [13] is
out of scope, how these systems should narrow schematic congruency
remains an open question. As Lyra illustrates, it is not sufficient to
simply extend the underlying visualization models to provide data trans-
formation capabilities. Such an approach presents a non-trivial gulf of
execution [11,30] by expecting authors to manually define data transfor-
mations. Instead, these systems must develop higher-level scaffolding
that automatically infers or suggests appropriate transformations when
necessary, analogous to their existing mechanisms for data binding
which automatically infer definitions for scales and guides.

5.3 The Task: Authoring, not Designing

Another fundamental assumption is that people want to author a chart,
not design one. In other words, we assume that users do not wish to
explore the visualization design space using our systems but rather
come with a specific chart design in mind. Perhaps their design is some-
thing they sketched on paper, or maybe they want to emulate a design
they saw elsewhere (e.g., in our systems’ associated galleries). This
assumption further implies that the author is already acquainted with
their dataset — we imagine the author to have already performed some
exploratory data analysis and preparation prior to using the systems.

It is unclear how these assumptions hold up in practice. For au-
thors without a specific design in mind, or for those with little or no
understanding of their dataset, our systems are of little help as they
begin with a blank canvas, a tabula rasa. Moreover, these assumptions
yield largely linear interaction flows. While all systems present several
different entry points to author a given design, once one starts down
a particular path it can be very difficult to make a change and often
involves starting from scratch (a highly viscous user experience [3]).
This process stands in stark contrast to how design practice prioritizes
a broad exploration of the design space (e.g., through alternating flare
and focus phases [6] or parallel prototyping [8]).

Though all three systems have been released, with deployed versions
that can be readily used, their adoption has been hindered by poor
support for organic practice. Thus, relaxing these assumptions may
facilitate a more natural design process. For instance, how might our
systems allow authors to explore and combine divergent design ideas?
How do we adapt the fork/merge workflow, popularized by version
control systems like Git, for interactive visualizations? Or how might
our systems incorporate visualization design recommendation [48]?

5.4 Export, Reuse, & Interoperability

Visualizations appear across a range of media (e.g., presentations, web-
sites, or print articles). Given this range, authors often add refinements

2Vega’s fold operator, used to transform a wide dataset into a long format,
was added after Lyra’s initial development; exposing it within Lyra would be a
straightforward implementation effort.

to their visualizations (e.g., adding annotations or visual embellish-
ments) using another application [1]. Our systems remain agnostic
about downstream uses, offering mechanisms to export the visualiza-
tion being constructed. The most common format is Scalable Vector
Graphics (SVG)3 to ensure high-fidelity display across a range of
screen resolutions, and to support further customization in graphics
applications such as Adobe Illustrator [2].

However, exporting the visualization as an image is a lossy operation.
The link to the backing dataset is broken, and visualization semantics
(e.g., whether a vector line denotes a mark or axis tick) is lost. With
only an SVG representation, it is difficult to recreate the visualization
with different input data, or perform any higher-level reasoning about
it (e.g., re-targeting it to different form factors [38]). Currently, Data
Illustrator does not support such use cases although one can anticipate
how its framework could be extended to do so. We instead focus our
discussion on Lyra and Charticulator.

Lyra and Charticulator visualizations can be exported as reusable
templates — as a Vega specification [41] expressed using JavaScript
Object Notation (JSON), or as a custom JSON-template or Power BI
custom visual [27], respectively. With these templates, authors can
generate new instances of the visualization with different input data, or
render it in different-sized canvases and have elements adapt appropri-
ately (e.g., resized scale and axis extents). Charticulator templates can
also be imported as a (nested) chart component for a small multiples
display. However, these templates remain hard-coded to the original
dataset schema. Any new data must be structured in an identical format
(i.e., columns of the same types as in the original dataset).

6 DISCUSSION: REFLECTING ON REFLECTIONS

Critical Reflections are a Viable Evaluation Method. In this paper,
we contribute critical reflections, an alternative method of evaluating
complex interactive systems motivated by the difficulty of using tradi-
tional comparative studies [35]. Critical reflections are modeled after
design critiques — a popular process in the design community for ana-
lyzing how effectively design choices meet goals [7]. Unlike critiques,
which occur throughout an iterative design process, being retrospective
has allowed us to understand the different trade offs that can be made
in pursuit of common goals. We believe this paper demonstrates that
critical reflections are a viable and informative evaluation method, pro-
viding a constructive set of “lessons learned” to inform future research
in visualization authoring systems. Moreover, we imagine that the criti-
cal reflection process would be equally applicable to a single system
and may yield more valuable insights than reporting trivial usability
issues or conducting contrived comparative user studies. Reflecting
on a single system would involve not merely articulating the rationale
for the design choices made, but discussing what alternate prototypes
were considered, what their relative strengths and weaknesses were,
which aspects were incorporated into the final version, or why they
were ultimately discarded.

The Devil is in the Details. We note that, even for the creators of one
of the three systems, it would have been infeasible to acquire these
insights by simply reading the individual papers. As there were signifi-
cant inconsistencies between the abstractions each system exposed, all
stakeholders needed to actively participate in extracting and mapping
intricate low-level details — the heart of the critical reflections process.
Detailed discussions of design rationales helped us understand the full
extent of the design space and revealed points that were often new to
one or more of us. Distilling this information into a series of high-level
takeaways would have defeated our original motivation; we believe
this because the reason any particular system favored expressivity or
learnability was often the result of a series of nuanced and intertwined
design choices. We believe this paper provides a new type of contribu-
tion to the visualization community [17], and demonstrates the value in
making collaborative progress through in-depth critical reflection.

3Lyra and Charticulator also offer the ability to export the visualization as a
rasterized image (i.e., PNG, JPEG), to simplify embedding the visualization.



REFERENCES

[1] A. Bigelow, S. Drucker, D. Fisher, and M. Meyer. Reflections on how
designers design with data. In Proceedings of the ACM International
Working Conference on Advanced Visual Interfaces (AVI), pp. 17–24,
2014. doi: 10.1145/2598153.2598175

[2] A. Bigelow, S. Drucker, D. Fisher, and M. Meyer. Iterating between tools
to create and edit visualizations. IEEE Transactions on Visualization and
Computer Graphics (Proceedings of InfoVis), 23(1):481–490, 2017. doi:
10.1109/TVCG.2016.2598609

[3] A. Blackwell and T. Green. Notational systems–the cognitive dimensions
of notations framework. HCI models, theories, and frameworks: toward
an interdisciplinary science. Morgan Kaufmann, 2003.

[4] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization.
IEEE Transactions on Visualization and Computer Graphics (Proceedings
of InfoVis), 15(6):1121–1128, 2009. doi: 10.1109/TVCG.2009.174

[5] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE
Transactions on Visualization and Computer Graphics (Proceedings of
InfoVis), 17(12):2301–2309, 2011. doi: 10.1109/TVCG.2011.185

[6] B. Buxton. Sketching User Experiences: Getting the Design Right and the
Right Design. Morgan kaufmann, 2010.

[7] A. Connor and A. Irizarry. Discussing Design: Improving Communication
and Collaboration through Critique. O’Reilly Media, 2015.

[8] S. P. Dow, A. Glassco, J. Kass, M. Schwarz, D. L. Schwartz, and S. R.
Klemmer. Parallel prototyping leads to better design results, more di-
vergence, and increased self-efficacy. ACM Transactions on Computer-
Human Interaction (TOCHI), 17(4):18, 2010. doi: 10.1145/1879831.
1879836

[9] L. Grammel, C. Bennett, M. Tory, and M.-A. Storey. A survey of visualiza-
tion construction user interfaces. In Short Paper Proceedings of EuroVis,
2013. doi: 10.2312/PE.EuroVisShort.EuroVisShort2013.019-023

[10] T. Grossman and R. Balakrishnan. The bubble cursor: enhancing target
acquisition by dynamic resizing of the cursor’s activation area. In Proceed-
ings of the ACM Conference on Human Factors in Computing Systems
(CHI), pp. 281–290, 2005. doi: 10.1145/1054972.1055012

[11] E. L. Hutchins, J. D. Hollan, and D. A. Norman. Direct manipulation
interfaces. Human-computer interaction, 1(4):311–338, 1985. doi: 10.
1207/s15327051hci0104 2

[12] D. G. Jansson and S. M. Smith. Design fixation. Design studies, 12(1):3–
11, 1991.

[13] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler: Interactive
visual specification of data transformation scripts. In Proceedings of the
ACM Conference on Human Factors in Computing Systems (CHI), pp.
3363–3372, 2011. doi: 10.1145/1978942.1979444

[14] Kiln Enterprises Ltd. Flourish, 2019. https://flourish.studio.
[15] N. W. Kim, E. Schweickart, Z. Liu, M. Dontcheva, W. Li, J. Popovic,

and H. Pfister. Data-driven guides: Supporting expressive design for
information graphics. IEEE Transactions on Visualization and Computer
Graphics (Proceedings of InfoVis), 23(1):491–500, 2017. doi: 10.1109/
TVCG.2016.2598620

[16] A. Kirk. Resources - Visualising Data, 2019. http://

visualisingdata.com/resources.
[17] B. Lee, K. Isaacs, D. Szafir, E. Marai, C. Turkay, M. Tory, S. Carpendale,

and A. Endert. Broadening intellectual diversity in visualization research
papers. IEEE Computer Graphics & Applications (CG&A), 2019. doi: 10.
1109/MCG.2019.2914844

[18] Z. Liu, J. Thompson, A. Wilson, M. Dontcheva, J. Delorey, S. Grigg,
B. Kerr, and J. Stasko. Data Illustrator: Augmenting vector design tools
with lazy data binding for expressive visualization authoring. In Proceed-
ings of the ACM Conference on Human Factors in Computing Systems
(CHI), pp. 123:1–123:13, 2018. doi: 10.1145/3173574.3173697

[19] G. Lupi. Data humanism: the revolutionary future of data visualization.
Print Magazine, 30, 2017.

[20] J. Mackinlay. Automating the design of graphical presentations of rela-
tional information. ACM Transactions On Graphics (ToG), 5(2):110–141,
1986. doi: 10.1145/22949.22950

[21] M. Mauri, T. Elli, G. Caviglia, G. Uboldi, and M. Azzi. RAWGraphs:
A visualisation platform to create open outputs. In Proceedings of the
ACM Italian CHI Conference, pp. 28:1–28:5, 2017. doi: 10.1145/3125571
.3125585

[22] E. Meeks. Third wave data visualization, 2018. Tapestry Conference
keynote. https://youtu.be/itChfcTx7ao.

[23] H. Mei, W. Chen, Y. Ma, H. Guan, and W. Hu. Viscomposer: A visual

programmable composition environment for information visualization.
Visual Informatics, 2(1):71–81, 2018. doi: 10.1016/j.visinf.2018.04.008

[24] G. G. Méndez, U. Hinrichs, and M. A. Nacenta. Bottom-up vs. top-
down: Trade-offs in efficiency, understanding, freedom and creativity with
infovis tools. In Proceedings of the ACM Conference on Human Factors
in Computing Systems (CHI), pp. 841–852, 2017. doi: 10.1145/3025453.
3025942

[25] G. G. Méndez, M. A. Nacenta, and U. Hinrichs. Considering agency and
data granularity in the design of visualization tools. In Proceedings of
the ACM Conference on Human Factors in Computing Systems (CHI), pp.
638:1–638:14, 2018. doi: 10.1145/3173574.3174212

[26] G. G. Méndez, M. A. Nacenta, and S. Vandenheste. iVoLVER: Interac-
tive visual language for visualization extraction and reconstruction. In
Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI), pp. 4073–4085, 2016. doi: 10.1145/2858036.2858435

[27] Microsoft Power BI: Custom visuals. https://powerbi.microsoft.
com/en-us/custom-visuals.

[28] T. Munzner. Visualization Analysis and Design. AK Peters/CRC Press,
2014.

[29] B. Myers, S. E. Hudson, and R. Pausch. Past, present, and future of
user interface software tools. ACM Transactions on Computer-Human
Interaction (TOCHI), 7(1):3–28, 2000. doi: 10.1145/344949.344959

[30] D. Norman. The Design of Everyday Things: Revised and Expanded
Edition. Basic books, 2013.

[31] S. A. T. Randy Yeip and W. Welch. A Field Guide to Red and Blue
America, 2016. The Wall Street Journal. http://graphics.wsj.com/
elections/2016/field-guide-red-blue-america/.

[32] C. Reas and B. Fry. Processing: Programming for the media arts. AI &
Society, 20(4):526–538, 2006. doi: 10.1007/s00146-006-0050-9

[33] D. Ren, T. Höllerer, and X. Yuan. iVisDesigner: Expressive interactive
design of information visualizations. IEEE Transactions on Visualization
and Computer Graphics (Proceedings of InfoVis), 20(12):2092–2101,
2014. doi: 10.1109/TVCG.2014.2346291

[34] D. Ren, B. Lee, and M. Brehmer. Charticulator: Interactive construction of
bespoke chart layouts. IEEE Transactions on Visualization and Computer
Graphics (Proceedings of InfoVis), 25(1), 2019. doi: 10.1109/TVCG.2018
.2865158

[35] D. Ren, B. Lee, M. Brehmer, and N. Henry Riche. Reflecting on the
evaluation of visualization authoring systems. In Workshop Proceedings
of Evaluation and Beyond - Methodological Approaches for Visualization
(BELIV), 2018. https://aka.ms/renbeliv18.

[36] J. C. Roberts, C. Headleand, and P. D. Ritsos. Sketching designs using the
five design-sheet methodology. IEEE Transactions on Visualization and
Computer Graphics, 22(1):419–428, Jan 2016. doi: 10.1109/TVCG.2015.
2467271

[37] L. C. Rost. What I learned recreating one chart using 24 tools. Source,
2016. https://goo.gl/uGE5dc.

[38] C. Sam. Ai2html and its impact on the news graphics industry. In Pro-
ceedings of the CHI Workshop on Data Visualization on Mobile Devices,
2018. https://mobilevis.github.io/program/.

[39] A. Satyanarayan and J. Heer. Lyra: An interactive visualization design
environment. Computer Graphics Forum (Proceedings of EuroVis), 33(3),
2014. doi: 10.1111/cgf.12391

[40] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer. Vega-Lite:
A grammar of interactive graphics. IEEE Transactions on Visualization
and Computer Graphics (Proceedings of InfoVis), 23(1):341–350, 2017.
doi: 10.1109/TVCG.2016.2599030

[41] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reactive Vega: A
streaming dataflow architecture for declarative interactive visualization.
IEEE Transactions on Visualization and Computer Graphics (Proceedings
of InfoVis), 22(1):659–668, 2016. doi: 10.1109/TVCG.2015.2467091

[42] A. Satyanarayan, K. Wongsuphasawat, and J. Heer. Declarative interaction
design for data visualization. In Proceedings of the ACM Symposium on
User Interface Software and Technology (UIST), pp. 669–678, 2014. doi:
10.1145/2642918.2647360

[43] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query, analysis,
and visualization of multidimensional relational databases. IEEE Transac-
tions on Visualization and Computer Graphics, 8(1):52–65, 2002. doi: 10.
1109/2945.981851

[44] J. Walny, S. Huron, and S. Carpendale. An exploratory study of data
sketching for visual representation. Computer Graphics Forum, 34(3):231–
240, 2015. doi: 10.1111/cgf.12635

[45] Y. Wang, H. Zhang, H. Huang, X. Chen, Q. Yin, Z. Hou, D. Zhang,

https://flourish.studio
http://visualisingdata.com/resources
http://visualisingdata.com/resources
https://youtu.be/itChfcTx7ao
https://powerbi.microsoft.com/en-us/custom-visuals
https://powerbi.microsoft.com/en-us/custom-visuals
http://graphics.wsj.com/elections/2016/field-guide-red-blue-america/
http://graphics.wsj.com/elections/2016/field-guide-red-blue-america/
https://aka.ms/renbeliv18
https://goo.gl/uGE5dc
https://mobilevis.github.io/program/


Q. Luo, and H. Qu. InfoNice: Easy creation of information graphics. In
Proceedings of the ACM Conference on Human Factors in Computing
Systems (CHI), pp. 335:1–335:12, 2018. doi: 10.1145/3173574.3173909

[46] H. Wickham. ggplot: An implementation of the grammar of graphics. R
package version 0.4. 0, 2006.

[47] L. Wilkinson. The Grammar of Graphics. Springer-Verlag, 1999.
[48] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and

J. Heer. Towards a general-purpose query language for visualization
recommendation. In Proceedings of the ACM Workshop on Human-In-
the-Loop Data Analytics (HILDA), p. 4, 2016. doi: 10.1145/2939502.
2939506

[49] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe, and
J. Heer. Voyager: Exploratory analysis via faceted browsing of visualiza-
tion recommendations. IEEE Transactions on Visualization and Computer
Graphics (Proceedings of InfoVis), 22(1):649–658, 2016. doi: 10.1109/
TVCG.2015.2467191

[50] H. Xia, N. Riche, F. Chevalier, B. D. Araujo, and D. Wigdor. DataInk:
Enabling direct and creative data-oriented drawing. In Proceedings of
the ACM Conference on Human Factors in Computing Systems (CHI), pp.
223:1–223:13, 2018. doi: 10.1145/3173574.3173797


	Introduction
	Related Work
	Approaches to Visualization Design
	Computer-Assisted Visualization Authoring
	Imperative and Declarative Programming
	Interactive Systems

	Guiding Design Considerations

	Background
	Critical Reflections on our System Components
	Marks
	Data Binding
	What Data Does a Glyph Represent?
	Mapping Data Values to Visual Properties

	Scales, Axes, and Legends
	Scale Visibility
	Manipulating Axes & Legends

	Layout
	Relative Layout
	Layout in a Collection
	Nested Layout
	Coordinate Systems


	Critical Reflections on our Shared Assumptions
	The Author: Literacy & Skill Transfer
	The Data: Cleaned & Pre-Processed
	The Task: Authoring, not Designing
	Export, Reuse, & Interoperability

	Discussion: Reflecting on Reflections

