S2016

Squares: Supporting Interactive Performance Analysis for Multiclass Classifiers

Donghao Ren^{1,2}, Saleema Amershi², Bongshin Lee², Jina Suh² and Jason D. Williams²

¹ University of California, Santa Barbara

² Microsoft Research, Redmond

Common ways of performance analysis

- Summary statistics
 - Accuracy
 - Precision
 - Recall

. . .

Log-Loss

Confusion Matrix

Predicted Class

SS	89.3 %	0.6%	6.9 %	3.3%		
Class	31.4%	42.0 %	19.4 %	7.2%		
Actual	18.6%	0.4%	79.8 %	1.2%		
\triangleleft	16.3%	1.1%	2.4%	80.2%		

6

Problems

- Disconnected from the underlying data.
- Hide important information such as score distribution.
- Not trivial to support *multiclass* classifiers.

7

Revise Design

Revise Design

Design Goals

- G1: Show performance at multiple levels of detail to help practitioners prioritize efforts.
 - Overall / Class-level / Instance-level
 - Error severity (errors with higher score on the wrong class are more severe)
- G2: Be agnostic to common performance metrics.
 - Support a wider range of scenarios.
- G3: Connect performance to data.
 - Provide access to data. Use small visual footprint to reserve space for scenariodependent data access views.

Squares Visualization Design

1. Each **class** is shown as a column

Visualization Design

3. Instances are binned according to **prediction scores**

Visualization Design

Visualizing Count-Based Metrics: Overall Accuracy

Visualizing Count-Based Metrics: Class-Level

Class-level precision and recall:

FPs and FNs are comparably salient: One-to-one correspondence between outlined boxes and striped boxes

Visualizing Score-Based Metrics

20

Help Prioritizing Debugging Efforts

21

Visualizing Confusion Between Classes

Dataset: MNIST Handwritten Digits 22

Instance-Level Details

On-hover parallel coordinates for detailed scores

Dataset: MNIST Handwritten Digits 23

Scalability

Scalability

Toggle between 3-levels of aggregation

- 24 participants
- Part 1: Comparison
 - Compare Squares against a commonly used ConfusionMatrix
 - Within-subject design
- Part 2: (Squares Only) Score Distribution
 - Evaluate Squares' ability to convey score distribution

Part 1: Squares vs. Confusion Matrix

			Predicted		
	Class1	Class2	Class3	Class4	Class5
Class1	186	2	2	1	3
Class2	6	169	1	4	2
Class3	3	0	211	0	3
Class4	3	10	2	199	0
Class5	4	4	5	0	180

ID	Label	Prediction	Class1	Class2	Class3	Class4	Class5
00014	Class4	Class2	0.098	0.431	0.021	0.423	0.027
00049	Class1	Class2	0.323	0.546	0.005	0.053	0.074
00174	Class4	Class2	0.003	0.861	0.000	0.126	0.009
<u>00193</u>	Class4	Class2	0.037	0.565	0.009	0.081	0.308
00198	Class4	Class2	0.008	0.484	0.016	0.344	0.148
00225	Class4	Class2	0.026	0.675	0.007	0.213	0.080
00230	Class4	Class2	0.018	0.449	0.079	0.255	0.199
00272	Class5	Class2	0.209	0.589	0.012	0.094	0.096
00381	Class5	Class2	0.296	0.332	0.006	0.049	0.317
00526	Class5	Class2	0.024	0.769	0.033	0.095	0.078
00537	Class4	Class2	0.013	0.801	0.002	0.042	0.141
00542	Class4	Class2	0.003	0.915	0.001	0.061	0.019
00700	Class5	Class2	0.220	0.622	0.008	0.074	0.076
00768	Class4	Class2	0.007	0.527	0.001	0.459	0.006
00934	Class4	Class2	0.009	0.585	0.000	0.401	0.004
00998	Class1	Class2	0.220	0.579	0.009	0.175	0.016

Squares with a Sortable Table

Confusion Matrix with a Sortable Table

Select/Deselect individual cells. Select cells of a given row/column.

Part 1: Tasks

- T1 Overall
 - Select the classifier with the larger number of errors
- T2 Class-level
 - Select one of the two classes with the most errors
- T3 Instance-level
 - Select an error with a score of .9 or above in the wrong class

Part 1: Squares Performed Better

Task Time

Squares lead to faster task time (Main Effect: p < 0.001)

Squares scale better in terms of the number of classes (Interaction Effect: p = 0.012)

30

Part 1: Squares Performed Better

Accuracy

 Squares lead to more accurate results

Part 1: People Preferred Squares

Squares was more helpful

Squares was preferred

Part 2: (Squares Only) Distribution Tasks

- T4 Overall
 - Select the classifier with the worst distribution.
- T5 Class-level
 - Select one of the two classes with the worst distribution
- T6 Confusion
 - Select the two classes most confused with each other

Part 2: Squares was helpful in distribution tasks

Large

Freeform Feedback

- Positive:
 - "Granular and at the same time general overview of the classifiers is great."
 - "Seeing the distribution of scores is very helpful."
 - "Had fun for the first time while classifying!"
- Negative:
 - "I prefer having numbers than pure display."
 - "[Confusion Matrix is] more straightforward, lower learning curve."

Future Work

- Further Evaluation
 - Compare to alternative designs of Confusion Matrix, as well as other visualization designs in the literature
- Scalability
 - Supporting more than 20 classes
 - Optimizing color assignments

Confusion Wheel [B. Alsallakh, VAST '14]

Squares as a Tool

• Deployed along with a machine learning toolkit within Microsoft

Acknowledgements

- We thank the support and feedback from the Machine Teaching Group at Microsoft Research.
- We thank the anonymous reviewers for their constructive comments.

Thanks! Questions?

Donghao Ren (donghao.ren@gmail.com) University of California, Santa Barbara

Survey of Machine Learning Practices

- Survey within a large software company in July. 2015.
- 102 respondents:

41

Number of Classes

- How many classes do your classifiers typically deal with (check all that apply)?
 - Most respondents typically deal with less than 20 classes.

Important Tasks

"How difficult" and "how important" ratings of tasks:

- Prioritizing efforts is difficult even for expert users.
- Understanding instance-level performance is relatively more difficult in common tools.

Integrating into LUIS (Language Understanding Intelligent Service)

LUIS	Language l	Jnderst	anding Intelligent Service (beta)							My Applications	About	Help	Support	Foru
Twitter S	Sentiment A	na	New utte	ances Search	Suggest	Review lab	pels		+					
Public Intents None Positive Neutral Negative Entities	sh	÷	Suggest There are labeled a	tterances from: tterances that wi no utterances frr ready. Choose "n cation's HTTP er	om this applic ew utterance	s" to provide	my LUIS endpoint Intent: Positive P endpoint which haven't be your own examples, or pub erances.	▼ ▼ olish	None 0.95 0.92					
Regex Fea No patterns Phrase Lis	Entities entities added atures	 ⊕ ⊕ 							Negative	9				
									Neutral 0.86 0.98					S
									Positive 0.96 0.70					<u>,</u>

