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Performance analysis is critical in machine learning
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• Summary statistics
• Accuracy
• Precision
• Recall
• Log-Loss
• …

Common ways of performance analysis
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• Disconnected from the underlying data.

• Hide important information such as score distribution.

• Not trivial to support multiclass classifiers.

Problems
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Squares



Design Process
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• G1: Show performance at multiple levels of detail to help 
practitioners prioritize efforts.
• Overall / Class-level / Instance-level
• Error severity (errors with higher score on the wrong class are more severe)

• G2: Be agnostic to common performance metrics.
• Support a wider range of scenarios.

• G3: Connect performance to data.
• Provide access to data. Use small visual footprint to reserve space for scenario-

dependent data access views.

Design Goals
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Squares Visualization Design

14

1. Each class is shown as a column

Dataset: Glasses from the UCI Machine Learning Repository



Visualization Design
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2. Each instance is shown as a box

Dataset: Glasses from the UCI Machine Learning Repository

1. Each class is shown as a column



Visualization Design

16Dataset: Glasses from the UCI Machine Learning Repository

1. Each class is shown as a column

3. Instances are binned according to prediction scores

2. Each instance is shown as a box



Visualization Design

17Dataset: Glasses from the UCI Machine Learning Repository



• Accuracy:

Visualizing Count-Based Metrics: Overall Accuracy
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Higher Accuracy Lower Accuracy

Correct Predictions
Total # of Instances =



Visualizing Count-Based Metrics: Class-Level
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Precision: Recall:

FPs and FNs are comparably salient:
One-to-one correspondence between 
outlined boxes and striped boxes

• Class-level precision and recall:

Lower Precision Lower Recall



Visualizing Score-Based Metrics
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Higher scoring instance (more confident)

Lower scoring instance (less confident)

Worse score distribution



Help Prioritizing Debugging Efforts
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More severe error (confidently wrong)

Less severe error (prediction can flip if 
scores change slightly)



Visualizing Confusion Between Classes

22Dataset: MNIST Handwritten Digits

C5 is confused with C3



Instance-Level Details

23Dataset: MNIST Handwritten Digits

On-hover parallel coordinates for detailed scores



Scalability
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Each strip represents 10 boxes

Truncation indicators



Scalability
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Toggle between 3-levels of aggregation



Evaluation



• 24 participants

• Part 1: Comparison
• Compare Squares against a commonly used ConfusionMatrix
• Within-subject design

• Part 2: (Squares Only) Score Distribution
• Evaluate Squares’ ability to convey score distribution

Controlled Experiment
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Part 1: Squares vs. Confusion Matrix
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Squares with a Sortable Table Confusion Matrix with a Sortable Table

Select/Deselect individual cells.
Select cells of a given row/column.



• T1 – Overall
• Select the classifier with the larger number of errors

• T2 – Class-level
• Select one of the two classes with the most errors

• T3 – Instance-level
• Select an error with a score of .9 or above in the wrong class

Part 1: Tasks
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• Task Time

Part 1: Squares Performed Better
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*** ***

***

Squares lead to faster task time
(Main Effect: p < 0.001)

Squares scale better in terms of the 
number of classes

(Interaction Effect: p = 0.012)



• Accuracy

Part 1: Squares Performed Better
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• Squares lead to more accurate 
results
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Part 1: People Preferred Squares
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Squares was more helpful Squares was preferred



• T4 – Overall
• Select the classifier with the worst distribution

• T5 – Class-level
• Select one of the two classes with the worst distribution

• T6 – Confusion
• Select the two classes most confused with each other

Part 2: (Squares Only) Distribution Tasks
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Part 2: Squares was helpful in distribution tasks
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• Positive:
• “Granular and at the same time general overview of the classifiers is great.”
• “Seeing the distribution of scores is very helpful.”
• “Had fun for the first time while classifying!”

• Negative:
• “I prefer having numbers than pure display.”
• “[Confusion Matrix is] more straightforward, lower learning curve.”

Freeform Feedback
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• Further Evaluation
• Compare to alternative designs of Confusion 

Matrix, as well as other visualization designs 
in the literature

• Scalability
• Supporting more than 20 classes
• Optimizing color assignments

Future Work
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Confusion Wheel [B. Alsallakh, VAST '14]



• Deployed along with a machine learning toolkit within Microsoft

Squares as a Tool
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Thanks! Questions?
Donghao Ren (donghao.ren@gmail.com)
University of California, Santa Barbara
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• Survey within a large software company in July. 2015.
• 102 respondents:

Survey of Machine Learning Practices
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• How many classes do your classifiers typically deal with (check all 
that apply)?
• Most respondents typically deal with less than 20 classes.

Number of Classes
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• “How difficult” and “how important” ratings of tasks:
• Prioritizing efforts is difficult even for expert users.
• Understanding instance-level performance is relatively more difficult in 

common tools.

Important Tasks
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Integrating into LUIS (Language Understanding Intelligent Service)
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